128 research outputs found

    Control Aware Radio Resource Allocation in Low Latency Wireless Control Systems

    Full text link
    We consider the problem of allocating radio resources over wireless communication links to control a series of independent wireless control systems. Low-latency transmissions are necessary in enabling time-sensitive control systems to operate over wireless links with high reliability. Achieving fast data rates over wireless links thus comes at the cost of reliability in the form of high packet error rates compared to wired links due to channel noise and interference. However, the effect of the communication link errors on the control system performance depends dynamically on the control system state. We propose a novel control-communication co-design approach to the low-latency resource allocation problem. We incorporate control and channel state information to make scheduling decisions over time on frequency, bandwidth and data rates across the next-generation Wi-Fi based wireless communication links that close the control loops. Control systems that are closer to instability or further from a desired range in a given control cycle are given higher packet delivery rate targets to meet. Rather than a simple priority ranking, we derive precise packet error rate targets for each system needed to satisfy stability targets and make scheduling decisions to meet such targets while reducing total transmission time. The resulting Control-Aware Low Latency Scheduling (CALLS) method is tested in numerous simulation experiments that demonstrate its effectiveness in meeting control-based goals under tight latency constraints relative to control-agnostic scheduling

    A PERFORMANCE ANALYSIS OF IEEE 802.11ax NETWORKS

    Get PDF
    The paper is focused on the forthcoming IEEE 802.11ax standard and its influence on Wi-Fi networks performance. The most important features dedicated to improve transmission effectiveness are presented. Furthermore, the simulation results of a new transmission modes are described. The comparison with the legacy IEEE 802.11n/ac standards shows that even partial implementation of a new standard should bring significant throughput improvements

    A Review on OFDMA and MU-MIMO MAC Protocols for upcoming IEEE Standard 802.11ax

    Get PDF
    IEEE introduced a new standard IEEE 802.11ax for the next generation WLANs.As we know,the current throughput is very low because of the current Media Access Control(MAC) in present wireless area networks.So,the concept of Orthogonal Frequency Multiple Access(OFDMA) to facilitate multi user access is introduced.The main challenges of adopting OFDMA areoverhead reduction and synchronization.To meet these challenges this paper revised an OFDMA based OMAX protocol.And due to various various bandwidth consuming applications and devices today’s WLANs have become stressed and low at throughput.To handle this problem MU MIMO is used to improve the performance of WLANs.This paper surveys uplink/downlink mutli user MAC protocols for MIMO enabled devices.It also identifies the key requirements of MAC protocol design

    EFFICIENT FINE-GRAINED 802.11AX BSR-BASED OFDMA RU ALLOCATION

    Get PDF
    Proposed herein are techniques that provide a simple Institute of Electrical and Electronics Engineers (IEEE) 802.11ax (WiFi6®) uplink (UL) orthogonal frequency-division multiple access (OFDMA) throughput improvement by exploiting existing standards and enterprise traffic patterns
    corecore