109 research outputs found

    Two-layer LMDS system architecture: DAVIC-based approach and analysis

    Get PDF
    Despite the growing interest for LMDS systems there have been only a few commercial implementations until now especially outside of the U.S.A. The use of hierarchical structure through two-layer networking has been even rarer. In many cases LMDS systems have strong advantages against their competitors to cover the last mile. In this article, we review and analyze the standards currently available and describe the European two-layer trial system developed in 1996-2000. We show why further development towards IP based LMDS is useful in the future. Most of our recommendations are based on results derived from the European Union supported research project CABSINET. It had the aim of demonstrating the viability of a 40 GHz cellular digital television system with a return channel to offer interactive services. Two systems were tested: a line of sight link using QPSK, and a non-line of sight with COFDM modulation scheme. In the RF-subsystems, the greatest difficulty of any viable LMDS system is to obtain a moderately low price for the user receiver, while fulfilling the hard OFDM requirements in terms of phase noise, stability and spectrum restrictions. Several options have been studied in order to design the subsystems with the smallest cost. This paper will present the architectures of the transmitters, nomadic terminals, and the design of the IF/RF subsystems for both types of modulations. The discussion is focused on system engineering and selections required in order to build a full two-layer LMDS system.This work has been supported in part by European Commission through the ACTS programme (CABSINET project). PM is in part supported by the Academy of Finland (grant 50624). Authors wish to thank the CABSINET research consortium for enjoyable collaboration and useful suggestions

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Real-Time Localization Using Software Defined Radio

    Get PDF
    Service providers make use of cost-effective wireless solutions to identify, localize, and possibly track users using their carried MDs to support added services, such as geo-advertisement, security, and management. Indoor and outdoor hotspot areas play a significant role for such services. However, GPS does not work in many of these areas. To solve this problem, service providers leverage available indoor radio technologies, such as WiFi, GSM, and LTE, to identify and localize users. We focus our research on passive services provided by third parties, which are responsible for (i) data acquisition and (ii) processing, and network-based services, where (i) and (ii) are done inside the serving network. For better understanding of parameters that affect indoor localization, we investigate several factors that affect indoor signal propagation for both Bluetooth and WiFi technologies. For GSM-based passive services, we developed first a data acquisition module: a GSM receiver that can overhear GSM uplink messages transmitted by MDs while being invisible. A set of optimizations were made for the receiver components to support wideband capturing of the GSM spectrum while operating in real-time. Processing the wide-spectrum of the GSM is possible using a proposed distributed processing approach over an IP network. Then, to overcome the lack of information about tracked devices’ radio settings, we developed two novel localization algorithms that rely on proximity-based solutions to estimate in real environments devices’ locations. Given the challenging indoor environment on radio signals, such as NLOS reception and multipath propagation, we developed an original algorithm to detect and remove contaminated radio signals before being fed to the localization algorithm. To improve the localization algorithm, we extended our work with a hybrid based approach that uses both WiFi and GSM interfaces to localize users. For network-based services, we used a software implementation of a LTE base station to develop our algorithms, which characterize the indoor environment before applying the localization algorithm. Experiments were conducted without any special hardware, any prior knowledge of the indoor layout or any offline calibration of the system

    Eligible earliest deadline first:Server-based scheduling for master-slave industrial wireless networks

    Get PDF
    Industrial automation and control systems are increasingly deployed using wireless networks in master-slave, star-type configurations that employ a slotted timeline schedule. In this paper, the scheduling of (re)transmissions to meet real-time constraints in the presence of non-uniform interference in such networks is considered. As packet losses often occur in correlated bursts, it is often useful to insert gaps before attempting retransmissions. In this paper, a quantum Earliest Deadline First (EDF) scheduling framework entitled ‘Eligible EDF’ is suggested for assigning (re)transmissions to available timeline slots by the master node. A simple but effective server strategy is introduced to reclaim unused channel utilization and replenish failed slave transmissions, a strategy which prevents cascading failures and naturally introduces retransmission gaps. Analysis and examples illustrate the effectiveness of the proposed method. Specifically, the proposed framework gives a timely throughput of 99.81% of the timely throughput that is optimally achievable using a clairvoyant scheduler

    Toward Open and Programmable Wireless Network Edge

    Get PDF
    Increasingly, the last hop connecting users to their enterprise and home networks is wireless. Wireless is becoming ubiquitous not only in homes and enterprises but in public venues such as coffee shops, hospitals, and airports. However, most of the publicly and privately available wireless networks are proprietary and closed in operation. Also, there is little effort from industries to move forward on a path to greater openness for the requirement of innovation. Therefore, we believe it is the domain of university researchers to enable innovation through openness. In this thesis work, we introduce and defines the importance of open framework in addressing the complexity of the wireless network. The Software Defined Network (SDN) framework has emerged as a popular solution for the data center network. However, the promise of the SDN framework is to make the network open, flexible and programmable. In order to deliver on the promise, SDN must work for all users and across all networks, both wired and wireless. Therefore, we proposed to create new modules and APIs to extend the standard SDN framework all the way to the end-devices (i.e., mobile devices, APs). Thus, we want to provide an extensible and programmable abstraction of the wireless network as part of the current SDN-based solution. In this thesis work, we design and develop a framework, weSDN (wireless extension of SDN), that extends the SDN control capability all the way to the end devices to support client-network interaction capabilities and new services. weSDN enables the control-plane of wireless networks to be extended to mobile devices and allows for top-level decisions to be made from an SDN controller with knowledge of the network as a whole, rather than device centric configurations. In addition, weSDN easily obtains user application information, as well as the ability to monitor and control application flows dynamically. Based on the weSDN framework, we demonstrate new services such as application-aware traffic management, WLAN virtualization, and security management

    Occupancy Detection using Wireless Sensor Network in Indoor Environment

    Get PDF
    Occupancy detection plays an important role in many smart buildings such as reducing building energy usage by controlling heating, ventilation and air conditioning (HVAC) systems, monitoring systems and managing lighting systems, tracking people in hospitals for medical issues, advertising to people in malls, and to search and rescue missions. The global positioning system (GPS) is used most widely as a localization system but highly inaccurate for indoor applications. The indoor environment is difficult to handle because along with the loss of signals, privacy is a major concern. Indoor tracking has many aspects in common with sensor localization in Wireless Sensor Networks (WSN). The contribution of this work is the demonstration of a nonintrusive approach to detect an occupancy in a building using wireless sensor networks to detect energy from cell phones in a secure facility and perform indoor localization based on the minimum mean square error (MMSE). To estimate the occupancy, the detected cellular signals information such as signal amplitude, frequency, power and detection time is sent to a fusion server, matched the detected signals by time and channel information, performed localization to estimate a location, and finally estimated the occupancy of rooms in a building from the estimated locations
    • …
    corecore