502 research outputs found

    Distributed Multicell Beamforming Design Approaching Pareto Boundary with Max-Min Fairness

    Full text link
    This paper addresses coordinated downlink beamforming optimization in multicell time-division duplex (TDD) systems where a small number of parameters are exchanged between cells but with no data sharing. With the goal to reach the point on the Pareto boundary with max-min rate fairness, we first develop a two-step centralized optimization algorithm to design the joint beamforming vectors. This algorithm can achieve a further sum-rate improvement over the max-min optimal performance, and is shown to guarantee max-min Pareto optimality for scenarios with two base stations (BSs) each serving a single user. To realize a distributed solution with limited intercell communication, we then propose an iterative algorithm by exploiting an approximate uplink-downlink duality, in which only a small number of positive scalars are shared between cells in each iteration. Simulation results show that the proposed distributed solution achieves a fairness rate performance close to the centralized algorithm while it has a better sum-rate performance, and demonstrates a better tradeoff between sum-rate and fairness than the Nash Bargaining solution especially at high signal-to-noise ratio.Comment: 8 figures. To Appear in IEEE Trans. Wireless Communications, 201

    Harmonized Cellular and Distributed Massive MIMO: Load Balancing and Scheduling

    Full text link
    Multi-tier networks with large-array base stations (BSs) that are able to operate in the "massive MIMO" regime are envisioned to play a key role in meeting the exploding wireless traffic demands. Operated over small cells with reciprocity-based training, massive MIMO promises large spectral efficiencies per unit area with low overheads. Also, near-optimal user-BS association and resource allocation are possible in cellular massive MIMO HetNets using simple admission control mechanisms and rudimentary BS schedulers, since scheduled user rates can be predicted a priori with massive MIMO. Reciprocity-based training naturally enables coordinated multi-point transmission (CoMP), as each uplink pilot inherently trains antenna arrays at all nearby BSs. In this paper we consider a distributed-MIMO form of CoMP, which improves cell-edge performance without requiring channel state information exchanges among cooperating BSs. We present methods for harmonized operation of distributed and cellular massive MIMO in the downlink that optimize resource allocation at a coarser time scale across the network. We also present scheduling policies at the resource block level which target approaching the optimal allocations. Simulations reveal that the proposed methods can significantly outperform the network-optimized cellular-only massive MIMO operation (i.e., operation without CoMP), especially at the cell edge

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Wireless Communications in the Era of Big Data

    Full text link
    The rapidly growing wave of wireless data service is pushing against the boundary of our communication network's processing power. The pervasive and exponentially increasing data traffic present imminent challenges to all the aspects of the wireless system design, such as spectrum efficiency, computing capabilities and fronthaul/backhaul link capacity. In this article, we discuss the challenges and opportunities in the design of scalable wireless systems to embrace such a "bigdata" era. On one hand, we review the state-of-the-art networking architectures and signal processing techniques adaptable for managing the bigdata traffic in wireless networks. On the other hand, instead of viewing mobile bigdata as a unwanted burden, we introduce methods to capitalize from the vast data traffic, for building a bigdata-aware wireless network with better wireless service quality and new mobile applications. We highlight several promising future research directions for wireless communications in the mobile bigdata era.Comment: This article is accepted and to appear in IEEE Communications Magazin

    Green inter-cluster interference management in uplink of multi-cell processing systems

    Get PDF
    This paper examines the uplink of cellular systems employing base station cooperation for joint signal processing. We consider clustered cooperation and investigate effective techniques for managing inter-cluster interference to improve users' performance in terms of both spectral and energy efficiency. We use information theoretic analysis to establish general closed form expressions for the system achievable sum rate and the users' Bit-per-Joule capacity while adopting a realistic user device power consumption model. Two main inter-cluster interference management approaches are identified and studied, i.e., through: 1) spectrum re-use; and 2) users' power control. For the former case, we show that isolating clusters by orthogonal resource allocation is the best strategy. For the latter case, we introduce a mathematically tractable user power control scheme and observe that a green opportunistic transmission strategy can significantly reduce the adverse effects of inter-cluster interference while exploiting the benefits from cooperation. To compare the different approaches in the context of real-world systems and evaluate the effect of key design parameters on the users' energy-spectral efficiency relationship, we fit the analytical expressions into a practical macrocell scenario. Our results demonstrate that significant improvement in terms of both energy and spectral efficiency can be achieved by energy-aware interference management

    Green Hybrid Satellite Terrestrial Networks: Fundamental Trade-Off Analysis

    Get PDF
    With the worldwide evolution of 4G generation and revolution in the information and communications technology(ICT) field to meet the exponential increase of mobile data traffic in the 2020 era, the hybrid satellite and terrestrial network based on the soft defined features is proposed from a perspective of 5G. In this paper, an end-to-end architecture of hybrid satellite and terrestrial network under the control and user Plane (C/U) split concept is studied and the performances are analysed based on stochastic geometry. The relationship between spectral efficiency (SE) and energy efficiency (EE) is investigated, taking consideration of overhead costs, transmission and circuit power, backhaul of gateway (GW), and density of small cells. Numerical results show that, by optimizing the key parameters, the hybrid satellite and terrestrial network can achieve nearly 90% EE gain with only 3% SE loss in relative dense networks, and achieve both higher EE and SE gain (20% and 5% respectively) in sparse networks toward the future 5G green communication networks
    corecore