122 research outputs found

    Telecommunications and data acquisition systems support for Voyager missions to Jupiter and Saturn, 1972-1981, prelaunch through Saturn encounter

    Get PDF
    The Deep Space Network has supported the Voyager Project for approximately nine years, during which time implementation, testing, and operational support was provided. Four years of this time involved testing prior to launch; the final five years included network operations support and additional network implementation. Intensive and critical support intervals included launch and four planetary encounters. The telecommunications and data acquisition support for the Voyager Missions to Jupiter and Saturn are summarized

    The Deep Space Network: A Radio Communications Instrument for Deep Space Exploration

    Get PDF
    The primary purpose of the Deep Space Network (DSN) is to serve as a communications instrument for deep space exploration, providing communications between the spacecraft and the ground facilities. The uplink communications channel provides instructions or commands to the spacecraft. The downlink communications channel provides command verification and spacecraft engineering and science instrument payload data

    The Evolution of Technology in the Deep Space Network: A History of the Advanced Systems Program

    Get PDF
    The Deep Space Network (DSN) of 1995 might be described as the evolutionary result of 45 years of deep space communication and navigation, together with the synergistic activities of radio science and radar and radio astronomy. But the evolution of the DSN did not just happen - it was carefully planned and created. The evolution of the DSN has been an ongoing engineering activity, and engineering is a process of problem solving under constraints, one of which is technology. In turn, technology is the knowledge base providing the capability and experience for practical application of various areas of science, when needed. The best engineering solutions result from optimization under the fewest constraints, and if technology needs are well anticipated (ready when needed), then the most effective engineering solution is possible. Throughout the history of the DSN it has been the goal and function of DSN advanced technology development (designated the DSN Advanced Systems Program from 1963 through 1994) to supply the technology needs of the DSN when needed, and thus to minimize this constraint on DSN engineering. Technology often takes considerable time to develop, and when that happens, it is important to have anticipated engineering needs; at times, this anticipation has been by as much as 15 years. Also, on a number of occasions, mission malfunctions or emergencies have resulted in unplanned needs for technology that has, in fact, been available from the reservoir of advanced technology provided by the DSN Advanced Systems Program. Sometimes, even DSN engineering personnel fail to realize that the organization of JPL permits an overlap of DSN advanced technology activities with subsequent engineering activities. This can result in the flow of advanced technology into DSN engineering in a natural and sometimes almost unnoticed way. In the following pages, we will explore some of the many contributions of the DSN Advanced Systems Program that were provided to DSN Engineering and Implementation. These contributions are, for the most part, unique capabilities that have met the requirements of flight projects for 45 years. These unique capabilities include not only the world's best deep-space communications system, but also outstanding competency in the fields of radio metric measurement, radar and radio astronomy, and radio science

    Exploring the next generation Deep Space Network

    Get PDF
    As the current 70-meter antennas are quite old (28-35 years) it is necessary to consider replacing these antennas in the near term as well as providing a capability beyond 70-meters in the future. A study was conducted that investigated the remaining service life of the existing antennas and considered alternatives for eventual replacement of the 70 m-subnet capability. This paper examines several of the concepts considered and explores some of the options for the next generation Deep Space Network

    Publications of the Jet Propulsion Laboratory 1983

    Get PDF
    The Jet propulsion Laboratory (JPL) bibliography describes and indexes by primary author the externally distributed technical reporting, released during calendar year 1983, that resulted from scientific and engineering work performed, or managed, by the Jet Propulsion Laboratory. Three classes of publications are included. JPL Publication (81-,82-,83-series, etc.), in which the information is complete for a specific accomplishment, articles published in the open literature, and articles from the quarterly telecommunications and Data Acquisition (TDA) Progress Report (42-series) are included. Each collection of articles in this class of publication presents a periodic survey of current accomplishments by the Deep Space Network as well as other developments in Earth-based radio technology

    The deep space network

    Get PDF
    The objectives, functions, and organization of the Deep Space Network are summarized. Deep space station, ground communication, and network operations control capabilities are described

    Radio science ground data system for the Voyager-Neptune encounter, part 1

    Get PDF
    The Voyager radio science experiments at Neptune required the creation of a ground data system array that includes a Deep Space Network complex, the Parkes Radio Observatory, and the Usuda deep space tracking station. The performance requirements were based on experience with the previous Voyager encounters, as well as the scientific goals at Neptune. The requirements were stricter than those of the Uranus encounter because of the need to avoid the phase-stability problems experienced during that encounter and because the spacecraft flyby was faster and closer to the planet than previous encounters. The primary requirement on the instrument was to recover the phase and amplitude of the S- and X-band (2.3 and 8.4 GHz) signals under the dynamic conditions encountered during the occultations. The primary receiver type for the measurements was open loop with high phase-noise and frequency stability performance. The receiver filter bandwidth was predetermined based on the spacecraft's trajectory and frequency uncertainties

    Ka-band (32-GHz) downlink capability for deep space communications

    Get PDF
    The first quarter century of U.S. solar system exploration using unmanned spacecraft has involved progressively higher operating frequencies for deep space telemetry: L-band (960 MHz) in 1962 to S-band (2.3 GHz) in 1964 to X-band (8.4 GHZ) in 1977. The next logical frequency to develop for deep space is the Ka-band (32 GHz) for which a primary deep space allocation of 500 MHz between 31.8 to 32.3 GHz was established in 1979. The telecommunications capability was improved by a factor of 77 (18.9 dB) through the frequency changes from L-band to X-band. Another improvement factor of 14.5 (11.6 dB) can be achieved by going to Ka-band. Plans to develop and demonstrate Ka-band capability include the continued measurement of weather effects at Deep Space Network (DSN) sites, development of a prototype DSN ground antenna and supporting subsystems, augmentation of planned spacecraft with Ka-band beacons, and development of spacecraft prototype modules for future Ka-band transmitters. Plans for augmenting the DSN with Ka-band capability by 1995 were also developed. A companion set of articles describes the Ka-band performance and technology in greater detail

    Long-Range Planning Cost Model for Support of Future Space Missions by the Deep Space Network

    Get PDF
    A simple model is suggested to do long-range planning cost estimates for Deep Space Network (DSP) support of future space missions. The model estimates total DSN preparation costs and the annual distribution of these costs for long-range budgetary planning. The cost model is based on actual DSN preparation costs from four space missions: Galileo, Voyager (Uranus), Voyager (Neptune), and Magellan. The model was tested against the four projects and gave cost estimates that range from 18 percent above the actual total preparation costs of the projects to 25 percent below. The model was also compared to two other independent projects: Viking and Mariner Jupiter/Saturn (MJS later became Voyager). The model gave cost estimates that range from 2 percent (for Viking) to 10 percent (for MJS) below the actual total preparation costs of these missions

    Publications of the Jet Propulsion Laboratory 1982

    Get PDF
    A bibliography of articles concerning topics on the deep space network, data acquisition, telecommunication, and related aerospace studies is presented. A sample of the diverse subjects include, solar energy remote sensing, computer science, Earth resources, astronomy, and satellite communication
    corecore