27 research outputs found

    Provisioning of Edge Computing Resources for Heterogeneous IoT Workload

    Get PDF
    With the evolution of cellular networks, the number of smart connected devices have witnessed a tremendous increase to reach billions by 2020 as forecasted by Cisco, constituting what is known today as the Internet of Things (IoT). With such explosion of smart devices, novel services have evolved and invaded almost every aspect of our lives; from e-health to smart homes and smart factories, etc. Such services come with stringent QoS requirements. While the current network infrastructure (4G) is providing an acceptable QoE to the end users, it will be rendered obsolete when considering the critical QoS requirements of such new services. Hence, to deliver the seamless experience these services provide, MEC has emerged as a promising technology to offer the cloud capabilities at the edge of the network, and hence, meeting the low latency requirements of such services. Moreover, another QoS parameter that needs to be addressed is the ultra high reliability demanded by the IoT services. Therefore,5G has evolved as a promising technology supporting ultra Reliable Low Latency Communication (uRLLC) and other service categories. While integrating uRLLC with MEC would help in realizing such services, it would however raise some challenges for the network operator. Thus, in this thesis, we address some of these challenges. Specifically, in the second chapter, we address the problem of MEC Resource Provisioning and Workload Assignment (RPWA) in an IoT environment, with heterogeneous workloads demanding services with stringent latency requirements. We formulate the problem as an MIP with the objective to minimize the re-sources deployment cost. Due to the complexity of the problem, we will develop a decomposition approach (RPWA-D) to solve the problem and study through different simulations, the performance of our approach. In chapter 3, we consider both ultra high reliability and low latency requirements of different IoT services, and solve the Workload Assignment problem (WA) in an IoT environment. We formulate the problem as an MIP with the objective of maximizing the admitted workload to the network. After showing the complexity of the problem and the non scalability of the WA-MIP, we propose two different approaches; WA-D and WA-Tabu. The results show that WA-Tabu was the most efficient and scalable

    Situation-aware Edge Computing

    Get PDF
    Future wireless networks must cope with an increasing amount of data that needs to be transmitted to or from mobile devices. Furthermore, novel applications, e.g., augmented reality games or autonomous driving, require low latency and high bandwidth at the same time. To address these challenges, the paradigm of edge computing has been proposed. It brings computing closer to the users and takes advantage of the capabilities of telecommunication infrastructures, e.g., cellular base stations or wireless access points, but also of end user devices such as smartphones, wearables, and embedded systems. However, edge computing introduces its own challenges, e.g., economic and business-related questions or device mobility. Being aware of the current situation, i.e., the domain-specific interpretation of environmental information, makes it possible to develop approaches targeting these challenges. In this thesis, the novel concept of situation-aware edge computing is presented. It is divided into three areas: situation-aware infrastructure edge computing, situation-aware device edge computing, and situation-aware embedded edge computing. Therefore, the concepts of situation and situation-awareness are introduced. Furthermore, challenges are identified for each area, and corresponding solutions are presented. In the area of situation-aware infrastructure edge computing, economic and business-related challenges are addressed, since companies offering services and infrastructure edge computing facilities have to find agreements regarding the prices for allowing others to use them. In the area of situation-aware device edge computing, the main challenge is to find suitable nodes that can execute a service and to predict a node’s connection in the near future. Finally, to enable situation-aware embedded edge computing, two novel programming and data analysis approaches are presented that allow programmers to develop situation-aware applications. To show the feasibility, applicability, and importance of situation-aware edge computing, two case studies are presented. The first case study shows how situation-aware edge computing can provide services for emergency response applications, while the second case study presents an approach where network transitions can be implemented in a situation-aware manner

    An offloading method using decentralized P2P-enabled mobile edge servers in edge computing

    Get PDF
    Edge computing has emerged as a promising infrastructure for providing elastic resources in the proximity of mobile users. Owing to resource limitations in mobile devices, offloading several computational tasks from mobile devices to mobile edge servers is the main means of improving the quality of experience of mobile users. In fact, because of the high speeds of moving vehicles on expressways, there would be numerous candidate mobile edge servers available for them to offload their computational workload. However, the selection of the mobile edge server to be utilized and how much computation should be offloaded to meet the corresponding task deadlines without large computing bills are topics that have not been discussed much. Furthermore, with the increasing deployment of mobile edge servers, their centralized management would cause certain performance issues. In order to address these challenges, we firstly apply peer-to-peer networks to manage geo-distributed mobile edge servers. Secondly, we propose a new deadline-aware and cost-effective offloading approach, which aims to improve the offloading efficiency for vehicles and allows additional tasks to meet their deadlines. The proposed approach was validated for its feasibility and efficiency by means of extensive experiments, which are presented in this paper

    Integration and characterisation of the performance of fifth-generation mobile technology (5g) connectivity over the University of Oulu 5g test network (5gtn) for cognitive edge node based on fractal edge platform

    Get PDF
    Abstract. In recent years, there has been a growing interest in cognitive edge nodes, which are intelligent devices that can collect and process data at the edge of the network. These nodes are becoming increasingly important for various applications such as smart cities, industrial automation, and healthcare. However, implementing cognitive edge nodes requires a reliable and efficient communication network. Therefore, this thesis assesses the performance of direct cellular (5G) and IEEE 802.11-based Wireless Local Area Network (WLAN) technology for three network architectures, which has the potential to offer low-latency, high-throughput and energy-efficient communication, for cognitive edge nodes. The study focused on evaluating the network performance metrics of throughput, latency, and power consumption for three different FRACTAL-based network architectures. These architectures include IEEE 802.11-based last mile, direct cellular (5G) backbone, and IEEE 802.11-based last mile over cellular (5G) backbone topologies. This research aims to provide insights into the performance of 5G technology for cognitive edge nodes. The findings suggest that the power consumption of IEEE 802.11-enabled nodes was only slightly higher than the reference case, indicating that it is more energy-efficient than 5G-enabled nodes. Additionally, in terms of latency, IEEE 802.11 technology may be more favourable. The throughput tests revealed that the cellular (5G) connection exhibited high throughput for communication between a test node and an upper-tier node situated either on the internet or at the network edge. In addition, it was found that the FRACTAL edge platform is flexible and scalable, and it supports different wireless technologies, making it a suitable platform for implementing cognitive edge nodes. Overall, this study provides insights into the potential of 5G technology and the FRACTAL edge platform for implementing cognitive edge nodes. The results of this research can be valuable for researchers and practitioners working in the field of wireless communication and edge computing, as it sheds light on the feasibility and performance of these technologies for implementing cognitive edge nodes in various applications
    corecore