5,914 research outputs found

    Anytime Hierarchical Clustering

    Get PDF
    We propose a new anytime hierarchical clustering method that iteratively transforms an arbitrary initial hierarchy on the configuration of measurements along a sequence of trees we prove for a fixed data set must terminate in a chain of nested partitions that satisfies a natural homogeneity requirement. Each recursive step re-edits the tree so as to improve a local measure of cluster homogeneity that is compatible with a number of commonly used (e.g., single, average, complete) linkage functions. As an alternative to the standard batch algorithms, we present numerical evidence to suggest that appropriate adaptations of this method can yield decentralized, scalable algorithms suitable for distributed/parallel computation of clustering hierarchies and online tracking of clustering trees applicable to large, dynamically changing databases and anomaly detection.Comment: 13 pages, 6 figures, 5 tables, in preparation for submission to a conferenc

    Methods for fast and reliable clustering

    Get PDF

    Dynamic Choice Under Ambiguity

    Get PDF
    This paper analyzes sophisticated dynamic choice for ambiguity-sensitive decision makers. It characterizes Consistent Planning via axioms on preferences over decision trees. Furthermore, it shows how to elicit conditional preferences from prior preferences. The key axiom is a weakening of Dynamic Consistency, deemed Sophistication. The analysis accommodates arbitrary decision models and updating rules. Hence, the results indicate that (i) ambiguity attitudes, (ii) updating rules, and (iii) sophisticated dynamic choice are mutually orthogonal aspects of preferences. As an example, a characterization of prior-by-prior Bayesian updating and Consistent Planning for arbitrary maxmin-expected utility preferences is presented. The resulting sophisticated MEU preferences are then used to analyze the value of information under ambiguity; a basic trade-off between information acquisition and commitment is highlighted.

    DEUM: a framework for an estimation of distribution algorithm based on Markov random fields.

    Get PDF
    Estimation of Distribution Algorithms (EDAs) belong to the class of population based optimisation algorithms. They are motivated by the idea of discovering and exploiting the interaction between variables in the solution. They estimate a probability distribution from population of solutions, and sample it to generate the next population. Many EDAs use probabilistic graphical modelling techniques for this purpose. In particular, directed graphical models (Bayesian networks) have been widely used in EDA. This thesis proposes an undirected graphical model (Markov Random Field (MRF)) approach to estimate and sample the distribution in EDAs. The interaction between variables in the solution is modelled as an undirected graph and the joint probability of a solution is factorised as a Gibbs distribution. The thesis describes a model of fitness function that approximates the energy in the Gibbs distribution, and shows how this model can be fitted to a population of solutions to estimate the parameters of the MRF. The estimated MRF is then sampled to generate the next population. This approach is applied to estimation of distribution in a general framework of an EDA, called Distribution Estimation using Markov Random Fields (DEUM). The thesis then proposes several variants of DEUM using different sampling techniques and tests their performance on a range of optimisation problems. The results show that, for most of the tested problems, the DEUM algorithms significantly outperform other EDAs, both in terms of number of fitness evaluations and the quality of the solutions found by them. There are two main explanations for the success of DEUM algorithms. Firstly, DEUM builds a model of fitness function to approximate the MRF. This contrasts with other EDAs, which build a model of selected solutions. This allows DEUM to use fitness in variation part of the evolution. Secondly, DEUM exploits the temperature coefficient in the Gibbs distribution to regulate the behaviour of the algorithm. In particular, with higher temperature, the distribution is closer to being uniform and with lower temperature it concentrates near some global optima. This gives DEUM an explicit control over the convergence of the algorithm, resulting in better optimisation
    corecore