2 research outputs found

    A robust abnormal behavior detection method using convolutional neural network

    Get PDF
    A behavior is considered abnormal when it is seen as unusual under certain contexts. The definition for abnormal behavior varies depending on situations. For example, people running in a field is considered normal but is deemed abnormal if it takes place in a mall. Similarly, loitering in the alleys, fighting or pushing each other in public areas are considered abnormal under specific circumstances. Abnormal behavior detection is crucial due to the increasing crime rate in the society. If an abnormal behavior can be detected earlier, tragedies can be avoided. In recent years, deep learning has been widely applied in the computer vision field and has acquired great success for human detection. In particular, Convolutional Neural Network (CNN) has shown to have achieved state-of-the-art performance in human detection. In this paper, a CNN-based abnormal behavior detection method is presented. The proposed approach automatically learns the most discriminative characteristics pertaining to human behavior from a large pool of videos containing normal and abnormal behaviors. Since the interpretation for abnormal behavior varies across contexts, extensive experiments have been carried out to assess various conditions and scopes including crowd and single person behavior detection and recognition. The proposed method represents an end-to-end solution to deal with abnormal behavior under different conditions including variations in background, number of subjects (individual, two persons or crowd), and a range of diverse unusual human activities. Experiments on five benchmark datasets validate the performance of the proposed approach

    Contour and texture for visual recognition of object categories

    Get PDF
    The recognition of categories of objects in images has become a central topic in computer vision. Automatic visual recognition systems are rapidly becoming central to applications such as image search, robotics, vehicle safety systems, and image editing. This work addresses three sub-problems of recognition: image classification, object detection, and semantic segmentation. The task of classification is to determine whether an object of a particular category is present or not. Object detection aims to localize any objects of the category. Semantic segmentation is a more complete image understanding, whereby an image is partitioned into coherent regions that are assigned meaningful class labels. This thesis proposes novel discriminative learning approaches to these problems. Our primary contributions are threefold. Firstly, we demonstrate that the contours (the outline and interior edges) of an object are, alone, sufficient for accurate visual recognition. Secondly, we propose two powerful new feature types: (i) a learned codebook of contour fragments matched with an improved oriented chamfer distance, and (ii) a set of texture-based features that simultaneously exploit local appearance, approximate shape, and appearance context. The efficacy of these new features types is evaluated on a wide variety of datasets. Thirdly, we show how, in combination, these two largely orthogonal feature types can substantially improve recognition performance above that achieved by either alone
    corecore