50 research outputs found

    Practical privacy enhancing technologies for mobile systems

    Get PDF
    Mobile computers and handheld devices can be used today to connect to services available on the Internet. One of the predominant technologies in this respect for wireless Internet connection is the IEEE 802.11 family of WLAN standards. In many countries, WLAN access can be considered ubiquitous; there is a hotspot available almost anywhere. Unfortunately, the convenience provided by wireless Internet access has many privacy tradeoffs that are not obvious to mobile computer users. In this thesis, we investigate the lack of privacy of mobile computer users, and propose practical enhancements to increase the privacy of these users. We show how explicit information related to the users' identity leaks on all layers of the protocol stack. Even before an IP address is configured, the mobile computer may have already leaked their affiliation and other details to the local network as the WLAN interface openly broadcasts the networks that the user has visited. Free services that require authentication or provide personalization, such as online social networks, instant messengers, or web stores, all leak the user's identity. All this information, and much more, is available to a local passive observer using a mobile computer. In addition to a systematic analysis of privacy leaks, we have proposed four complementary privacy protection mechanisms. The main design guidelines for the mechanisms have been deployability and the introduction of minimal changes to user experience. More specifically, we mitigate privacy problems introduced by the standard WLAN access point discovery by designing a privacy-preserving access-point discovery protocol, show how a mobility management protocol can be used to protect privacy, and how leaks on all layers of the stack can be reduced by network location awareness and protocol stack virtualization. These practical technologies can be used in designing a privacy-preserving mobile system or can be retrofitted to current systems

    Secure and Privacy-Preserving Authentication Protocols for Wireless Mesh Networks

    Get PDF
    Wireless mesh networks (WMNs) have emerged as a promising concept to meet the challenges in next-generation wireless networks such as providing flexible, adaptive, and reconfigurable architecture while offering cost-effective solutions to service providers. As WMNs become an increasingly popular replacement technology for last-mile connectivity to the home networking, community and neighborhood networking, it is imperative to design efficient and secure communication protocols for these networks. However, several vulnerabilities exist in currently existing protocols for WMNs. These security loopholes can be exploited by potential attackers to launch attack on WMNs. The absence of a central point of administration makes securing WMNs even more challenging. The broadcast nature of transmission and the dependency on the intermediate nodes for multi-hop communications lead to several security vulnerabilities in WMNs. The attacks can be external as well as internal in nature. External attacks are launched by intruders who are not authorized users of the network. For example, an intruding node may eavesdrop on the packets and replay those packets at a later point of time to gain access to the network resources. On the other hand, the internal attacks are launched by the nodes that are part of the WMN. On example of such attack is an intermediate node dropping packets which it was supposed to forward. This chapter presents a comprehensive discussion on the current authentication and privacy protection schemes for WMN. In addition, it proposes a novel security protocol for node authentication and message confidentiality and an anonymization scheme for privacy protection of users in WMNs.Comment: 32 pages, 10 figures. The work is an extended version of the author's previous works submitted in CoRR: arXiv:1107.5538v1 and arXiv:1102.1226v

    Protecting the Communication Structure in Sensor Networks

    Get PDF
    In the near future wireless sensor networks will be employed in a wide variety of applications establishing ubiquitous networks that will pervade society. The inherent vulnerability of these massively deployed networks to a multitude of threats, including physical tampering with nodes exacerbates concerns about privacy and security. For example, denial of service attacks (DoS) that compromise or disrupt communications or target nodes serving key roles in the network, e.g. sink nodes, can easily undermine the functionality as well as the performance delivered by the network. Particularly vulnerable are the components of the communications or operation infrastructure. Although, by construction, most sensor network systems do not possess a built-in infrastructure, a virtual infrastructure, that may include a coordinate system, a cluster structure, and designated communication paths, may be established post-deployment in support of network management and operation. Since knowledge of this virtual infrastructure can be instrumental for successfully compromising network security, maintaining the anonymity of the virtual infrastructure is a primary security concern. Somewhat surprisingly, in spite of its importance, the anonymity problem has not been addressed in wireless sensor networks. The main contribution of this work is to propose an energy-efficient protocol for maintaining the anonymity of the virtual infrastructure in a class of sensor network systems. Our solution defines schemes for randomizing communications such that the cluster structure, and coordinate system used remain undetectable and in visible to an observer of network traffic during both the setup and operation phases of the network

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    The dark side of the internet: a study about representations of the deep web and the Tor network in the British press

    Get PDF
    The imaginary of the Deep Web is commonly associated with crime, crypto markets and immoral content. However, the best-known Deep Web system, the Tor Network, is a technology developed to protect people’s privacy through online anonymity, in the context of the contemporary culture of surveillance, thus enabling civil liberties. To understand this contradiction, this thesis looks at the British press representation of the Deep Web and the Tor Network. An extensive empirical research study unveils how newspapers portray these technologies, by looking at meanings, uses and users. In order to meet this goal, this research conducts a content analysis of 833 articles about Deep Web technologies published between 2001 and 2017 by six British newspapers – tabloids Daily Mail, Daily Mirror and The Sun, and quality newspapers Daily Telegraph, The Guardian and The Times – and a critical discourse analysis of 58 reports mentioning the Tor Network, issued by the same newspapers, between 2008 and 2017. The findings demonstrate that the British press represents the Deep Web in a sharply negative way, through negative concepts, definitions and associations. This portrayal attributes opacity to the Deep Web, engendering distrust of its uses and propagating user stereotypes that reflect an overall criminalisation of privacy. Also, the press presents a hyper- panic approach by consistently connecting this new medium to well-known social anxieties and portraying these technologies as undesirable, immoral and illegal. Hyper-panic is the theoretical contribution of this thesis and can be explained as the way in which media panic (the Deep Web, in this case) multiplies moral panic (for instance, terrorism, paedophilia and drug consumption). Specifically about Tor, this work concludes that the media present multiple aspects of this system, from discussing the ways in which one can enable civil liberties, to condemning criminals hiding behind technology, addressing the inherent ambivalence connected to the uses of online anonymity, i.e. it is neither completely bad nor completely good. The general synopsis about Tor, however, is still negative. Finally, the consistent association by the British press between the Deep Web and criminal and antisocial behaviours promotes a dissociation between the Deep Web and the Web itself, in that cyberspace is separated between negative uses (the Deep Web) and positive uses (the Web), instead of being understood as a nuanced whole

    A Taxonomy for and Analysis of Anonymous Communications Networks

    Get PDF
    Any entity operating in cyberspace is susceptible to debilitating attacks. With cyber attacks intended to gather intelligence and disrupt communications rapidly replacing the threat of conventional and nuclear attacks, a new age of warfare is at hand. In 2003, the United States acknowledged that the speed and anonymity of cyber attacks makes distinguishing among the actions of terrorists, criminals, and nation states difficult. Even President Obama’s Cybersecurity Chief-elect recognizes the challenge of increasingly sophisticated cyber attacks. Now through April 2009, the White House is reviewing federal cyber initiatives to protect US citizen privacy rights. Indeed, the rising quantity and ubiquity of new surveillance technologies in cyberspace enables instant, undetectable, and unsolicited information collection about entities. Hence, anonymity and privacy are becoming increasingly important issues. Anonymization enables entities to protect their data and systems from a diverse set of cyber attacks and preserves privacy. This research provides a systematic analysis of anonymity degradation, preservation and elimination in cyberspace to enhance the security of information assets. This includes discovery/obfuscation of identities and actions of/from potential adversaries. First, novel taxonomies are developed for classifying and comparing well-established anonymous networking protocols. These expand the classical definition of anonymity and capture the peer-to-peer and mobile ad hoc anonymous protocol family relationships. Second, a unique synthesis of state-of-the-art anonymity metrics is provided. This significantly aids an entity’s ability to reliably measure changing anonymity levels; thereby, increasing their ability to defend against cyber attacks. Finally, a novel epistemic-based mathematical model is created to characterize how an adversary reasons with knowledge to degrade anonymity. This offers multiple anonymity property representations and well-defined logical proofs to ensure the accuracy and correctness of current and future anonymous network protocol design

    December 18, 2016 (Weekly) TV This Week

    Get PDF
    corecore