6 research outputs found

    Untappable communication channels over optical fibers from quantum-optical noise

    Get PDF
    Coherent light, as produced by lasers, gives rise to an intrinsic noise, known as quantum noise, optical noise or shot noise. AlphaEta is a protocol which exploits this physical phenomenon to obtain secure data encryption or key distribution over a fiber-optic channel in the presence of an eavesdropper. In this paper we focus on the cryptographic aspects of AlphaEta and its variants. Moreover, we propose a new protocol for which we can provide a rigorous proof that the eavesdropper obtains neglible information. In comparison to single-photon quantum cryptography, AlphaEta provide much higher throughputs combined with a well-known technology

    Design for a Superluminal Signaling Device

    Full text link

    QUANTUM SECURE COMMUNICATION USING POLARIZATION HOPPING MULTI-STAGE PROTOCOLS

    Get PDF
    This dissertation presents a study of the security and performance of a quantum communication system using multi-stage multi-photon tolerant protocols. Multi-stage protocols are a generalization of the three-stage protocol proposed in 2006 by Subhash Kak. Multi-stage protocols use “Polarization Hopping,” which is the process of changing the polarization state at each stage of transmission. During the execution of a multi-stage protocol, the message transfer always starts by encoding a bit of information in a polarization state; for example, bit 0 is encoded using state |0⟩ and bit 1 is encoded using state|1⟩ whereas, on the channel, the state of polarization is given by α|├ 0⟩┤+β|├ 1⟩┤. In the following α and β are restricted to the real numbers i.e., the polarization stays on the equator of the Poincare sphere. A transformation applied by one communicating party at a given stage will result in new values of α and β. This dissertation analyzes the security of multi-stage, multi-photon tolerant protocols and proposes an upper bound on the average number of photons per pulse in the cases where Fock states and the cases where coherent states are used in the implementation of the three-stage protocol. The derived average number of photons is the maximum limit at which the three-stage protocol can operate at a quantum secure level while operating in a multi-photon domain. In addition, this dissertation studies the vulnerability of the multi-stage protocol to the Trojan horse attack, Photon Number splitting attack (PNS), Amplification attack, as well as the man-in-the middle attack. Moreover, this dissertation proposes a modified version of the multi-stage protocol. This modified version uses an initialization vector and implements a chaining mode between consecutive implementations of the protocol. The modified version is proposed in the case of the three-stage protocol and named a key/message expansion four variables three-stage protocol. The proposed nomenclature is based on the fact that an additional variable is added to secure the three-stage protocol. The introduction of this additional variable has the potential to secure the multi-stage protocol in the multi-photon regime. It results in the eavesdropper having a set of simultaneous equations where the number of variables exceeds the number of equations. The dissertation also addresses the performance of the multi-stage, multi-photon tolerant protocol. An average photon number of 1.5 photon/stage is used to calculate the maximum achievable distance and key transfer rates while using the single-stage protocol over fiber optic cables. We compute the increase in distance as well as data transfer rate while using the single-stage protocol. Channel losses as well as the detector losses are accounted for. Finally, an application of the multi-stage protocol in IEEE 802.11 is proposed. This application provides wireless networks with a quantum-level of security. It proposes the integration of multi-stage protocols into the four-way handshake of IEEE 802.11

    The Cryptographic Imagination

    Get PDF
    Originally published in 1996. In The Cryptographic Imagination, Shawn Rosenheim uses the writings of Edgar Allan Poe to pose a set of questions pertaining to literary genre, cultural modernity, and technology. Rosenheim argues that Poe's cryptographic writing—his essays on cryptography and the short stories that grew out of them—requires that we rethink the relation of poststructural criticism to Poe's texts and, more generally, reconsider the relation of literature to communication. Cryptography serves not only as a template for the language, character, and themes of much of Poe's late fiction (including his creation, the detective story) but also as a "secret history" of literary modernity itself. "Both postwar fiction and literary criticism," the author writes, "are deeply indebted to the rise of cryptography in World War II." Still more surprising, in Rosenheim's view, Poe is not merely a source for such literary instances of cryptography as the codes in Conan Doyle's "The Dancing-Men" or in Jules Verne, but, through his effect on real cryptographers, Poe's writing influenced the outcome of World War II and the development of the Cold War. However unlikely such ideas sound, The Cryptographic Imagination offers compelling evidence that Poe's cryptographic writing clarifies one important avenue by which the twentieth century called itself into being. "The strength of Rosenheim's work extends to a revisionistic understanding of the entirety of literary history (as a repression of cryptography) and then, in a breathtaking shift of register, interlinks Poe's exercises in cryptography with the hyperreality of the CIA, the Cold War, and the Internet. What enables this extensive range of applications is the stipulated tension Rosenheim discerns in the relationship between the forms of the literary imagination and the condition of its mode of production. Cryptography, in this account, names the technology of literary production—the diacritical relationship between decoding and encoding—that the literary imagination dissimulates as hieroglyphics—the hermeneutic relationship between a sign and its content."—Donald E. Pease, Dartmouth Colleg

    Design in the Age of Information: A Report to the National Science Foundation (NSF)

    Get PDF
    The Information Age is upon us - it has become a global force in our everyday lives. But the promise of significant benefits from this revolution, which has been driven largely by technologists, will not be realized without more careful planning and design of information systems that can be integral to the simultaneously emerging user-cultures. In cultural terms, information systems must be effective, reliable, affordable, intuitively meaningful, and available anytime and everywhere. In this phase of the information revolution, design will be essential
    corecore