20 research outputs found

    Visualising Process Model Hierarchies

    Get PDF

    Phrasing Bimanual Interaction for Visual Design

    Get PDF
    Architects and other visual thinkers create external representations of their ideas to support early-stage design. They compose visual imagery with sketching to form abstract diagrams as representations. When working with digital media, they apply various visual operations to transform representations, often engaging in complex sequences. This research investigates how to build interactive capabilities to support designers in putting together, that is phrasing, sequences of operations using both hands. In particular, we examine how phrasing interactions with pen and multi-touch input can support modal switching among different visual operations that in many commercial design tools require using menus and tool palettes—techniques originally designed for the mouse, not pen and touch. We develop an interactive bimanual pen+touch diagramming environment and study its use in landscape architecture design studio education. We observe interesting forms of interaction that emerge, and how our bimanual interaction techniques support visual design processes. Based on the needs of architects, we develop LayerFish, a new bimanual technique for layering overlapping content. We conduct a controlled experiment to evaluate its efficacy. We explore the use of wearables to identify which user, and distinguish what hand, is touching to support phrasing together direct-touch interactions on large displays. From design and development of the environment and both field and controlled studies, we derive a set methods, based upon human bimanual specialization theory, for phrasing modal operations through bimanual interactions without menus or tool palettes

    Adaptive interfaces for mobile preference-based searching

    Get PDF
    Today's mobile computing devices provide a convenient means to search for points-of-interest (POIs) such as restaurants and accommodation. Mobile Preference-Based Search Tools (PBSTs) allow users to identify POIs such as restaurants or accommodation most suited to their needs and constraints using a mobile device. These devices however, have several design constraints including limited screen space and hardware capabilities. Adaptive User Interfaces (AUIs) have been proposed to address these issues but have not been extensively applied to mobile PBSTs such as mobile tourist guides. In addition, AUIs possess several benefits and advantages over static (traditional) interfaces, which do not take a user's preferences, skill set and experience into account. Little research, however, has been conducted into identifying the potential benefits of AUIs for mobile preference-based searching (PBS). The aim of this research was to determine the extent to which an AUI could improve the effectiveness and user satisfaction of mobile PBS. A literature study was conducted to determine the benefits and limitations of existing mobile PBSTs and determine how these could be improved. The potential benefits of AUIs for mobile PBSTs and a mobile map-based visualisation system were identified. A suitable model for incorporating an AUI into a mobile PBST was identified. The requirements for a mobile PBST were combined with the potentially adaptable objects of a Mobile Map-based Visualisation (MMV) system to provide adaptation suggestions for POInter, an existing mobile tourist guide. A field study using POInter was conducted in order to measure the extent to which participants agreed with suggestions provided for adapting the information, interaction and visualisation aspects of the system. These results were used to derive adaptation requirements for A-POInter, an adaptive version of POInter. Using a model-based design approach, an AUI was designed and implemented for A-POInter. An extensive field study was then conducted to evaluate the usability of the adaptations provided by A-POInter. The quantitative and qualitative data collected from the evaluations allowed the usability of A-POInter to be determined. The results of the field study showed that the participants were highly satisfied with the usability and the usefulness of the adaptations provided by A-POInter. Conclusions and recommendations for future work based on the results of the research were then outlined to conclude the dissertation

    Ragnarok

    Get PDF
    This report describes the current state of my research in software development environments. I argue in favour of strong support for project management, comprehension and navigation, and collaboration primarily based on experiences from developing large-scale industrial-strength applications.An underlying model of such an environment, named ``Ragnarok´´, is outlined. A design and first prototype of important parts of Ragnarok is described as well as some results from initial experiments

    LenSelect: Object Selection in Virtual Environments by Dynamic Object Scaling

    Get PDF
    AbstractWe present a novel selection technique for VR called LenSelect. The main idea is to decrease the Index of Difficulty (ID) according to Fitts’ Law by dynamically increasing the size of the potentially selectable objects. This facilitates the selection process especially in cases of small, distant or partly occluded objects, but also for moving targets. In order to evaluate our method, we have defined a set of test scenarios that covers a broad range of use cases, in contrast to often used simpler scenes. Our test scenarios include practically relevant scenarios with realistic objects but also synthetic scenes, all of which are available for download. We have evaluated our method in a user study and compared the results to two state-of-the-art selection techniques and the standard ray-based selection. Our results show that LenSelect performs similar to the fastest method, which is ray-based selection, while significantly reducing the error rate by 44%

    Designing for Effective Freehand Gestural Interaction

    Get PDF

    Cognitive Foundations for Visual Analytics

    Full text link

    Visualisation of Long in Time Dynamic Networks on Large Touch Displays

    Get PDF
    Any dataset containing information about relationships between entities can be modelled as a network. This network can be static, where the entities/relationships do not change over time, or dynamic, where the entities/relationships change over time. Network data that changes over time, dynamic network data, is a powerful resource when studying many important phenomena, across wide-ranging fields from travel networks to epidemiology.However, it is very difficult to analyse this data, especially if it covers a long period of time (e.g, one month) with respect to its temporal resolution (e.g. seconds). In this thesis, we address the problem of visualising long in time dynamic networks: networks that may not be particularly large in terms of the number of entities or relationships, but are long in terms of the length of time they cover when compared to their temporal resolution.We first introduce Dynamic Network Plaid, a system for the visualisation and analysis of long in time dynamic networks. We design and build for an 84" touch-screen vertically-mounted display as existing work reports positive results for the use of these in a visualisation context, and that they are useful for collaboration. The Plaid integrates multiple views and we prioritise the visualisation of interaction provenance. In this system we also introduce a novel method of time exploration called ‘interactive timeslicing’. This allows the selection and comparison of points that are far apart in time, a feature not offered by existing visualisation systems. The Plaid is validated through an expert user evaluation with three public health researchers.To confirm observations of the expert user evaluation, we then carry out a formal laboratory study with a large touch-screen display to verify our novel method of time navigation against existing animation and small multiples approaches. From this study, we find that interactive timeslicing outperforms animation and small multiples for complex tasks requiring a compari-son between multiple points that are far apart in time. We also find that small multiples is best suited to comparisons of multiple sequential points in time across a time interval.To generalise the results of this experiment, we later run a second formal laboratory study in the same format as the first, but this time using standard-sized displays with indirect mouse input. The second study reaffirms the results of the first, showing that our novel method of time navigation can facilitate the visual comparison of points that are distant in time in a way that existing approaches, small multiples and animation, cannot. The study demonstrates that our previous results generalise across display size and interaction type (touch vs mouse).In this thesis we introduce novel representations and time interaction techniques to improve the visualisation of long in time dynamic networks, and experimentally show that our novel method of time interaction outperforms other popular methods for some task types

    An Advanced A-V- Player to Support Scalable Personalised Interaction with Multi-Stream Video Content

    Get PDF
    PhDCurrent Audio-Video (A-V) players are limited to pausing, resuming, selecting and viewing a single video stream of a live broadcast event that is orchestrated by a professional director. The main objective of this research is to investigate how to create a new custom-built interactive A V player that enables viewers to personalise their own orchestrated views of live events from multiple simultaneous camera streams, via interacting with tracked moving objects, being able to zoom in and out of targeted objects, and being able to switch views based upon detected incidents in specific camera views. This involves research and development of a personalisation framework to create and maintain user profiles that are acquired implicitly and explicitly and modelling how this framework supports an evaluation of the effectiveness and usability of personalisation. Personalisation is considered from both an application oriented and a quality supervision oriented perspective within the proposed framework. Personalisation models can be individually or collaboratively linked with specific personalisation usage scenarios. The quality of different personalised interaction in terms of explicit evaluative metrics such as scalability and consistency can be monitored and measured using specific evaluation mechanisms.European Union's Seventh Framework Programme ([FP7/2007-2013]) under grant agreement No. ICT- 215248 and from Queen Mary University of London
    corecore