11 research outputs found

    Untangling the GNSS-R coherent and incoherent components: Experimental evidences over the ocean

    Get PDF
    © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Global Navigation Satellite Systems Reflected (GNSS-R) signals exhibit an incoherent and a coherent components [1], [2]. Current models assume that one or the other are dominant, and the calibration, and geophysical parameter retrieval (eg. wind speed, soil moisture ...) are developed accordingly. Even the presence itself of the coherent component of a GNSS reflected signal has been a matter of discussion in the last years. In this work, the method used in [3] to separate the leakage of the direct signal from the reflected one is applied to a set of GNSS signals reflected collected over the ocean by the MIR [4], [5], an airborne dual-band (L1/E1 and L5/E5a), multi-constellation (GPS and Galileo) GNSS-R instrument with two 19-elements array with 4 beam-steered each. The results presented demonstrate the feasibility of the proposed technique to untangle the coherent and incoherent components in GNSS reflected signals. This technique allows the processing of these components separately, which will increase the calibration accuracy (as today both are mixed together), and allows high resolution applications since the spatial resolution of the coherent component is determined by the size of the first Fresnel zone [6] (300-500 meters from a LEO satellite), and not by the size of the glistening zone (~25 km from a LEO satellite).This work was supported by the Spanish Ministry of Science, Innovation and Universities, “Sensing with Pio- neering Opportunistic Techniques”, grant RTI2018-099008- B-C21, and the grant for recruitment of early-stage research staff FI-DGR 2015 and 2018 of the AGAUR - Generalitat de Catalunya (FEDER)Postprint (author's final draft

    Vegetation canopy height retrieval using L1 and L5 airborne GNSS-R

    Get PDF
    Vegetation canopy height (CH) is one of the important remote-sensing parameters related to forests’ structure, and it can be related to the biomass and the carbon stock. Global navigation satellite system-reflectometry (GNSS-R) has proved capable to retrieve vegetation information at a moderate resolution from space (20–65 km) using L1 C/A signals. In this study, data retrieved by the airborne microwave interferometric reflectometer (MIR) GNSS-R instrument at L1 and L5 are compared to the Global Forest CH product, with a spatial resolution of 30 m. This work analyzes the waveforms (WFs) measured at both bands, and the correlation of the waveform width and the reflectivity values to the CH product. A neural network algorithm is used for the retrieval, showing that the combination of the reflectivity and the waveform width allows to estimate the CH information at a very high resolution, with a root-mean-square error (RMSE) of 4.25 and 4.07 m at L1 and L5, respectively, which is an error about 14% of the actual CH.Postprint (updated version

    Improved gnss-r altimetry methods: Theory and experimental demonstration using airborne dual frequency data from the microwave interferometric reflectometer (mir)

    Get PDF
    Altimetric performance of Global Navigation Satellite System - Reflectometry (GNSS-R) instruments depends on receiver’s bandwidth and signal-to-noise ratio (SNR). The altimetric delay is usually computed from the time difference between the peak of the direct signal waveform and the maximum of the derivative of the reflected signal waveform. Dual-frequency data gathered by the airborne Microwave Interferometric Reflectometer (MIR) in the Bass Strait, between Australia and Tasmania, suggest that this approach is only valid for flat surfaces and large bandwidth receivers. This work analyses different methods to compute the altimetric observables using GNSS-R. A proposed novel methodThis work was funded by the Spanish Ministry of Science, Innovation and Universities, “Sensing with Pioneering Opportunistic Techniques”, grant RTI2018-099008-B-C21/AEI/10.13039/ 501100011033, and the grant for recruitment of early-stage research staff FI-DGR 2015 of the AGAUR— Generalitat de Catalunya (FEDER), Spain, and the grant for recruitment of early-stage research staff FI 2018 of the AGAUR—Generalitat de Catalunya (FEDER), Spain, and Unidad de Excelencia María de Maeztu MDM-2016-060Postprint (published version

    Articles publicats en accés obert al Campus del Baix Llobregat

    Get PDF
    Amb motiu de la setmana mundial de l'accés obert (Open Access Week 2020) presentem aquest document amb els articles publicats en accés obert per autors del Campus del Baix Llobregat.Postprint (published version

    National Astronomy Meeting 2019 Abstract Book

    Get PDF
    The National Astronomy Meeting 2019 Abstract Book. Abstracts accepted and presented, including both oral and poster presentations, at the Royal Astronomical Society's NAM2019 conference, held at Lancaster University between 30 June and 4 July 2019

    EVOLUTION OF THE SUBCONTINENTAL LITHOSPHERE DURING MESOZOIC TETHYAN RIFTING: CONSTRAINTS FROM THE EXTERNAL LIGURIAN MANTLE SECTION (NORTHERN APENNINE, ITALY)

    Get PDF
    Our study is focussed on mantle bodies from the External Ligurian ophiolites, within the Monte Gavi and Monte Sant'Agostino areas. Here, two distinct pyroxenite-bearing mantle sections were recognized, mainly based on their plagioclase-facies evolution. The Monte Gavi mantle section is nearly undeformed and records reactive melt infiltration under plagioclase-facies conditions. This process involved both peridotites (clinopyroxene-poor lherzolites) and enclosed spinel pyroxenite layers, and occurred at 0.7–0.8 GPa. In the Monte Gavi peridotites and pyroxenites, the spinel-facies clinopyroxene was replaced by Ca-rich plagioclase and new orthopyroxene, typically associated with secondary clinopyroxene. The reactive melt migration caused increase of TiO2 contents in relict clinopyroxene and spinel, with the latter also recording a Cr2O3 increase. In the Monte Gavi peridotites and pyroxenites, geothermometers based on slowly diffusing elements (REE and Y) record high temperature conditions (1200-1250 °C) related to the melt infiltration event, followed by subsolidus cooling until ca. 900°C. The Monte Sant'Agostino mantle section is characterized by widespread ductile shearing with no evidence of melt infiltration. The deformation recorded by the Monte Sant'Agostino peridotites (clinopyroxene-rich lherzolites) occurred at 750–800 °C and 0.3–0.6 GPa, leading to protomylonitic to ultramylonitic textures with extreme grain size reduction (10–50 μm). Compared to the peridotites, the enclosed pyroxenite layers gave higher temperature-pressure estimates for the plagioclase-facies re-equilibration (870–930 °C and 0.8–0.9 GPa). We propose that the earlier plagioclase crystallization in the pyroxenites enhanced strain localization and formation of mylonite shear zones in the entire mantle section. We subdivide the subcontinental mantle section from the External Ligurian ophiolites into three distinct domains, developed in response to the rifting evolution that ultimately formed a Middle Jurassic ocean-continent transition: (1) a spinel tectonite domain, characterized by subsolidus static formation of plagioclase, i.e. the Suvero mantle section (Hidas et al., 2020), (2) a plagioclase mylonite domain experiencing melt-absent deformation and (3) a nearly undeformed domain that underwent reactive melt infiltration under plagioclase-facies conditions, exemplified by the the Monte Sant'Agostino and the Monte Gavi mantle sections, respectively. We relate mantle domains (1) and (2) to a rifting-driven uplift in the late Triassic accommodated by large-scale shear zones consisting of anhydrous plagioclase mylonites. Hidas K., Borghini G., Tommasi A., Zanetti A. & Rampone E. 2021. Interplay between melt infiltration and deformation in the deep lithospheric mantle (External Liguride ophiolite, North Italy). Lithos 380-381, 105855

    Impact of geogenic degassing on C-isotopic composition of dissolved carbon in karst systems of Greece

    Get PDF
    The Earth C-cycle is complex, where endogenic and exogenic sources are interconnected, operating in a multiple spatial and temporal scale (Lee et al., 2019). Non-volcanic CO2 degassing from active tectonic structures is one of the less defined components of this cycle (Frondini et al., 2019). Carbon mass-balance (Chiodini et al., 2000) is a useful tool to quantify the geogenic carbon output from regional karst hydrosystems. This approach has been demonstrated for central Italy and may be valid also for Greece, due to the similar geodynamic settings. Deep degassing in Greece has been ascertained mainly at hydrothermal and volcanic areas, but the impact of geogenic CO2 released by active tectonic areas has not yet been quantified. The main aim of this research is to investigate the possible deep degassing through the big karst aquifers of Greece. Since 2016, 156 karst springs were sampled along most of the Greek territory. To discriminate the sources of carbon, the analysis of the isotopic composition of carbon was carried out. δ13CTDIC values vary from -16.61 to -0.91‰ and can be subdivided into two groups characterized by (a) low δ13CTDIC, and (b) intermediate to high δ13CTDIC with a threshold value of -6.55‰. The composition of the first group can be related to the mixing of organic-derived CO2 and the dissolution of marine carbonates. Springs of the second group, mostly located close to Quaternary volcanic areas, are linked to possible carbon input from deep sources

    Impact of Etna’s volcanic emission on major ions and trace elements composition of the atmospheric deposition

    Get PDF
    Mt. Etna, on the eastern coast of Sicily (Italy), is one of the most active volcanoes on the planet and it is widely recognized as a big source of volcanic gases (e.g., CO2 and SO2), halogens, and a lot of trace elements, to the atmosphere in the Mediterranean region. Especially during eruptive periods, Etna’s emissions can be dispersed over long distances and cover wide areas. A group of trace elements has been recently brought to attention for their possible environmental and human health impacts, the Technology-critical elements. The current knowledge about their geochemical cycles is still scarce, nevertheless, recent studies (Brugnone et al., 2020) evidenced a contribution from the volcanic activity for some of them (Te, Tl, and REE). In 2021, in the framework of the research project “Pianeta Dinamico”, by INGV, a network of 10 bulk collectors was implemented to collect, monthly, atmospheric deposition samples. Four of these collectors are located on the flanks of Mt. Etna, other two are in the urban area of Catania and three are in the industrial area of Priolo, all most of the time downwind of the main craters. The last one, close to Cesarò (Nebrodi Regional Park), represents the regional background. The research aims to produce a database on major ions and trace element compositions of the bulk deposition and here we report the values of the main physical-chemical parameters and the deposition fluxes of major ions and trace elements from the first year of research. The pH ranged from 3.1 to 7.7, with a mean value of 5.6, in samples from the Etna area, while it ranged between 5.2 and 7.6, with a mean value of 6.4, in samples from the other study areas. The EC showed values ranging from 5 to 1032 μS cm-1, with a mean value of 65 μS cm-1. The most abundant ions were Cl- and SO42- for anions, Na+ and Ca+ for cations, whose mean deposition fluxes, considering all sampling sites, were 16.6, 6.8, 8.4, and 6.0 mg m-2 d, respectively. The highest deposition fluxes of volcanic refractory elements, such as Al, Fe, and Ti, were measured in the Etna’s sites, with mean values of 948, 464, and 34.3 μg m-2 d-1, respectively, higher than those detected in the other sampling sites, further away from the volcanic source (26.2, 12.4, 0.5 μg m-2 d-1, respectively). The same trend was also observed for volatile elements of prevailing volcanic origin, such as Tl (0.49 μg m-2 d-1), Te (0.07 μg m-2 d-1), As (0.95 μg m-2 d-1), Se (1.92 μg m-2 d-1), and Cd (0.39 μg m-2 d-1). Our preliminary results show that, close to a volcanic area, volcanic emissions must be considered among the major contributors of ions and trace elements to the atmosphere. Their deposition may significantly impact the pedosphere, hydrosphere, and biosphere and directly or indirectly human health

    Untangling the incoherent and coherent scattering components in GNSS-R and novel applications

    Get PDF
    As opposed to monostatic radars where incoherent backscattering dominates, in bistatic radars, such as Global Navigation Satellite Systems Reflectometry (GNSS-R), the forward scattered signals exhibit both an incoherent and a coherent component. Current models assume that either one or the other are dominant, and the calibration and geophysical parameter retrieval (e.g., wind speed, soil moisture, etc.) are developed accordingly. Even the presence of the coherent component of a GNSS reflected signal itself has been a matter of discussion in the last years. In this work, a method developed to separate the leakage of the direct signal in the reflected one is applied to a data set of GNSS-R signals collected over the ocean by the Microwave Interferometer Reflectometer (MIR) instrument, an airborne dual-band (L1/E1 and L5/E5a), multi-constellation (GPS and Galileo) GNSS-R instrument with two 19-elements antenna arrays with 4 beam-steered each. The presented results demonstrate the feasibility of the proposed technique to untangle the coherent and incoherent components from the total power waveform in GNSS reflected signals. This technique allows the processing of these components separately, which increases the calibration accuracy (as today both are mixed and processed together), allowing higher resolution applications since the spatial resolution of the coherent component is determined by the size of the first Fresnel zone (300–500 meters from a LEO satellite), and not by the size of the glistening zone (25 km from a LEO satellite). The identification of the coherent component enhances also the location of the specular reflection point by determining the peak maximum from this coherent component rather than the point of maximum derivative of the incoherent one, which is normally noisy and it is blurred by all the glistening zone contributions
    corecore