468 research outputs found

    A polynomial bound for untangling geometric planar graphs

    Get PDF
    To untangle a geometric graph means to move some of the vertices so that the resulting geometric graph has no crossings. Pach and Tardos [Discrete Comput. Geom., 2002] asked if every n-vertex geometric planar graph can be untangled while keeping at least n^\epsilon vertices fixed. We answer this question in the affirmative with \epsilon=1/4. The previous best known bound was \Omega((\log n / \log\log n)^{1/2}). We also consider untangling geometric trees. It is known that every n-vertex geometric tree can be untangled while keeping at least (n/3)^{1/2} vertices fixed, while the best upper bound was O(n\log n)^{2/3}. We answer a question of Spillner and Wolff [arXiv:0709.0170 2007] by closing this gap for untangling trees. In particular, we show that for infinitely many values of n, there is an n-vertex geometric tree that cannot be untangled while keeping more than 3(n^{1/2}-1) vertices fixed. Moreover, we improve the lower bound to (n/2)^{1/2}.Comment: 14 pages, 7 figure

    On the Obfuscation Complexity of Planar Graphs

    Get PDF
    Being motivated by John Tantalo's Planarity Game, we consider straight line plane drawings of a planar graph GG with edge crossings and wonder how obfuscated such drawings can be. We define obf(G)obf(G), the obfuscation complexity of GG, to be the maximum number of edge crossings in a drawing of GG. Relating obf(G)obf(G) to the distribution of vertex degrees in GG, we show an efficient way of constructing a drawing of GG with at least obf(G)/3obf(G)/3 edge crossings. We prove bounds (\delta(G)^2/24-o(1))n^2 < \obf G <3 n^2 for an nn-vertex planar graph GG with minimum vertex degree δ(G)≥2\delta(G)\ge 2. The shift complexity of GG, denoted by shift(G)shift(G), is the minimum number of vertex shifts sufficient to eliminate all edge crossings in an arbitrarily obfuscated drawing of GG (after shifting a vertex, all incident edges are supposed to be redrawn correspondingly). If δ(G)≥3\delta(G)\ge 3, then shift(G)shift(G) is linear in the number of vertices due to the known fact that the matching number of GG is linear. However, in the case δ(G)≥2\delta(G)\ge2 we notice that shift(G)shift(G) can be linear even if the matching number is bounded. As for computational complexity, we show that, given a drawing DD of a planar graph, it is NP-hard to find an optimum sequence of shifts making DD crossing-free.Comment: 12 pages, 1 figure. The proof of Theorem 3 is simplified. An overview of a related work is adde

    Untangling Planar Curves

    Get PDF
    Any generic closed curve in the plane can be transformed into a simple closed curve by a finite sequence of local transformations called homotopy moves. We prove that simplifying a planar closed curve with n self-crossings requires Theta(n^{3/2}) homotopy moves in the worst case. Our algorithm improves the best previous upper bound O(n^2), which is already implicit in the classical work of Steinitz; the matching lower bound follows from the construction of closed curves with large defect, a topological invariant of generic closed curves introduced by Aicardi and Arnold. This lower bound also implies that Omega(n^{3/2}) degree-1 reductions, series-parallel reductions, and Delta-Y transformations are required to reduce any planar graph with treewidth Omega(sqrt{n}) to a single edge, matching known upper bounds for rectangular and cylindrical grid graphs. Finally, we prove that Omega(n^2) homotopy moves are required in the worst case to transform one non-contractible closed curve on the torus to another; this lower bound is tight if the curve is homotopic to a simple closed curve
    • …
    corecore