10 research outputs found

    Challenges Imposed by User's Mobility in Future HetNet: Offloading and Mobility Management

    Get PDF
    The users' mobility imposes challenges to mobility management and, the offloading process, which hinder the conventional heterogeneous networks (HetNets) in meeting the huge data traffic requirements of the future. In this thesis, a trio-connectivity (TC), which includes a control-plane (C-plane), a user-plane (U-plane) and an indication-plane (I-plane), is proposed to tackle these challenges. Especially, the I-plane is created as an indicator to help the user equipment (UE) identify and discover the small cells in the system prior to offloading her from the overloaded cells e.g. macro cells, to the cells with abundant resources e.g. small cells. In order to show the advantages of the proposed TC structure, a comparison between the TC and the dual-connectivity (DC) is presented in this thesis, in terms of uplink energy efficiency (ULEE) and energy consumption. Furthermore, the complexity of mobility management is addressed in this thesis as the HetNets will have to handle a large number of UEs and their frequent handoffs due to very dense small-footprint small cells. Considering an accurate mobility framework is essential not only to find the potential offloading to the small cells but also to show the mobility impact on the quality of service (QoS). This thesis presents a framework to model and derive the coverage of small cells, the cell sojourn time and the handoff rate in a multi-tier HetNet by taking into account the overlap coverage among the small cells. The results show the effects of a number of parameters, including the density and the transmit power of the small cells and the power control factor, on the system performance. They also show that the TC can outperform the DC in dense HetNets in terms of energy efficiency and energy consumption

    The Optimum Rate of Inter-Frequency Scan in Inter-Frequency HetNets

    Get PDF
    Inter-frequency scan (IFS) is a process carried out by the terminals to discover the small cells (SCs) in the interfrequency heterogeneous networks (HetNets) prior to offload them to the discovered SCs. The IFS has a great impact on the quality of service, the energy efficiency and the spectral efficiency in the cellular systems. In this paper, a framework is presented to model and evaluate the impact of IFS on the system performance by using the stochastic geometry. The energy efficiency is derived as performance metric to obtain the optimum value of the IFS rate (optimum number of scans per unit time) by taking into consideration the trade-off in the offloading process between the power consumption and exploiting the system resources efficiently. Considering the energy consumption for performing IFSs along with the energy consumption for maintaining the uplink transmission will help to find the optimum value of IFS rate that achieves the best energy efficiency. The analysis and results show that the optimum IFS rate depends on different system parameters such as SCs’ density, terminal’s speed and the transmit power of the SCs (SCs’ coverage)

    Mobility Management in Small Cell Networks

    Get PDF
    The cell sojourn time and the handoff rate are considered as the main parameters in the mobility management of the cellular systems. In this paper, we address the mobility management in a two-tier heterogeneous network (HetNet) and propose a framework to study the impact of different system parameters on the handoff rate and the small cell sojourn time. In the proposed framework, the overlapping coverage among the small cells and the number of overlaps on the path of a reference user equipment (UE) are derived to obtain the actual time that the reference UE spends in each small cell during its movement from the starting point to the destination point. The results show the accuracy of the analysis in this paper in comparison to the analysis when ignoring the impact of the overlaps. The results also show the importance of considering the overlaps among the small cells in dense HetNets

    Trio-Connectivity for Efficient Uplink Performance in Future Mobile HetNets

    Get PDF
    The technical challenges, e.g. the mobility management and the offloading process, hinder the conventional cellular systems to meet the huge data traffic requirements of the next generation mobile communications. The traditional system (e.g dual-connectivity (DC)) has been proposed to improve the mobility management, however, it will inherit the big trade-off in the offloading process between the energy consumption for the small cell (SC) discovery (SCD) process and the efficiency of utilizing the system resources (e.g. frequency and signaling). In this paper, we present a framework to model the potential offloading opportunities as well as the offloading loss when a typical user equipment (UE) performs the inter-frequency (IRF) scan periodically. The proposed framework also studies the impact of the SCD on the energy efficiency. To improve the system performance and reduce the power consumption at the UEs, a new scheme, trio-connectivity (TC), is proposed in this paper to tackle the aforementioned challenges. The TC includes three planes: control-plane (C-plane), user-plane (U-plane) and indication-plane (I-plane). The I-plane works as an indicator to help the UE to identify and discover the SCs in the system prior to offloading. The role of the I-plane is to keep the SCD on one frequency channel regardless of the number of frequency channels in the system. In the proposed offloading mechanism, some of the energy consumption is transferred from the UE to the network. By using the proposed framework, UE energy efficiency and system energy efficiency as well as the total energy consumption are derived as performance metrics to compare between the TC and the DC. The results show that the TC can outperform the DC in dense cellular systems

    Impact of Small Cells Overlapping on Mobility Management

    Get PDF
    The mobility management will be more complex and will have a great impact on the quality of service (QoS) in the future cellular networks, as these networks will have to handle a huge number of user equipment (UEs) and their frequent handoffs due to very dense short-footage small cells. This paper presents a framework to model and derive the coverage of small cells, the cell sojourn time and the handoff rate in multi-tier small cell networks. The distribution of the small cells around a reference UE’s path is studied by taking into consideration the overlaps among the small cells. Two types of handoff rates are introduced to estimate the load managed by different cells, where inter-frequency handoff (IRH) rate and intra-frequency handoff (IAH) rate represent the fraction of handoffs managed by the first tier and the other tiers, respectively. Our analysis shows that ignoring the overlaps among the small cells affects the accuracy of the results ignificantly. The simulation results validate the accuracy of the analytical results and also show the impact of different parameters such as the small cell density, the number of tiers and the size of the small cells on the small cell sojourn time, the macro cell sojourn time and the handoff rate

    Contributions to Analysis and Mitigation of Cochannel Interference in Cellular Wireless Networks

    Get PDF
    Cellular wireless networks have become a commodity. We use our cellular devices every day to connect to others, to conduct business, for entertainment. Strong demand for wireless access has made corresponding parts of radio spectrum very valuable. Consequently, network operators and their suppliers are constantly being pressured for its efficient use. Unlike the first and second generation cellular networks, current generations do not therefore separate geographical sites in frequency. This universal frequency reuse, combined with continuously increasing spatial density of the transmitters, leads to challenging interference levels in the network. This dissertation collects several contributions to analysis and mitigation of interference in cellular wireless networks. The contributions are categorized and set in the context of prior art based on key characteristics, then they are treated one by one. The first contribution encompasses dynamic signaling that measures instantaneous interference situations and allows only for such transmissions that do not harm each other excessively. A novel forward signaling approach is introduced as an alternative to traditional reverse signaling. Forward signaling allows the interference management decisions to be done at the receiver, where there is more relevant information available. The second contribution analyzes cross-link interference in heterogeneous networks. Cross-link interference is interference between downlink and uplink transmissions that can appear in time-division duplex (TDD) networks. It is shown that uplink reception of small cells can be disturbed considerably by macrocell downlink transmissions. We proposes an intuitive solution to the problem based on power control. Users in small cells have generally enough power headroom as the distance to the small base station is often short. The third contribution provides an extensive analysis of a specific interference managment method that the Long-Term Evolution (LTE) applies in cochannel heterogeneous deployments. We analyze this so-called time muting using a modern stochastic geometry approach and show that performance of the method strongly depends on residual interference in the muted sections of time. The fourth and last contribution analyzes the impact of interference rank, i.e., number of spatial streams at the interferer, on a beamformed or spatially block coded transmission. It is shown that when the interferer chooses to transmit multiple spatial streams, spreading the power in spatial domain has potential to decrease probability of outage at neighbor receiver, especially if the neighbor transmission uses beamforming

    SDN-based Flexible Resource Management and Service-Oriented Virtualization for 5G Mobile Networks and Beyond

    Get PDF
    This thesis examines how Software Defined Network (SDN) and Network Virtualization (NV) technologies can make 5G and beyond mobile networks more flexible, scalable and programmable to support the performance demands of the emerging heterogeneous applications. In this direction, concepts like mobile network slicing, multi-tenancy, and multi-connectivity have been investigated and their performance is analyzed. The SDN paradigm is used to enable flexible resource allocation to the end users, improve network resource utilization and avoid or rapidly solve the network congestion problems. The proposed network architectures are 3rd Generation Partnership Project (3GPP) standards compliant and integrate Open Network Foundation (ONF) SDN specifications to ensure seamless interoperability between different standards and backward/forward compatibility. Novel mechanisms and algorithms to efficiently manage the resources of evolving 5G Time-Division Duplex (TDD) networks in a flexible manner are introduced. These mechanisms enable formation of virtual cells on-demand which allows diverse resource utilization from multiple eNBs to the users. Within the scope of this thesis, SDN-based frameworks to enhance the QoE of end user applications considering Time Division-Long Term Evolution (TD-LTE) small cells have also been developed and network resource sharing scenarios with Frequency-Division Duplex (FDD)/TDD coexistence has been studied. In addition, this thesis also proposes and investigates a novel service-oriented network slicing concept for evolving 5G TDD networks which involve traffic prediction mechanisms and includes user mobility. An analytical model is also introduced that formulates the network slice resource allocation as a weighted optimization problem. The evaluations of the proposed solutions are performed using 3GPP standard compliant simulation settings. The proposed solutions have been compared with the state-of-the art schemes and the performance gains offered by the proposed solutions have been demonstrated. Performance is evaluated considering metrics such as throughput, delay, network resource utilization etc. The Mean Opinion Score (MOS) metric is used for evaluating the Quality of Experience (QoE) for end-user applications. With the help of SDN-based network management algorithms investigated in this work, it is shown how 5G+ networks can be managed efficiently, while at the same time provide enhanced flexibility and programmability to improve the performance of diverse applications and services delivered over the network to the end users

    Experimental analysis and proof-of-concept of distributed mechanisms for local area wireless networks

    Get PDF

    Resource Management and Backhaul Routing in Millimeter-Wave IAB Networks Using Deep Reinforcement Learning

    Get PDF
    Thesis (PhD (Electronic Engineering))--University of Pretoria, 2023..The increased densification of wireless networks has led to the development of integrated access and backhaul (IAB) networks. In this thesis, deep reinforcement learning was applied to solve resource management and backhaul routing problems in millimeter-wave IAB networks. In the research work, a resource management solution that aims to avoid congestion for access users in an IAB network was proposed and implemented. The proposed solution applies deep reinforcement learning to learn an optimized policy that aims to achieve effective resource allocation whilst minimizing congestion and satisfying the user requirements. In addition, a deep reinforcement learning-based backhaul adaptation strategy that leverages a recursive discrete choice model was implemented in simulation. Simulation results where the proposed algorithms were compared with two baseline methods showed that the proposed scheme provides better throughput and delay performance.Sentech Chair in Broadband Wireless Multimedia Communications.Electrical, Electronic and Computer EngineeringPhD (Electronic Engineering)Unrestricte
    corecore