5 research outputs found

    Underwater Fish Detection using Deep Learning for Water Power Applications

    Full text link
    Clean energy from oceans and rivers is becoming a reality with the development of new technologies like tidal and instream turbines that generate electricity from naturally flowing water. These new technologies are being monitored for effects on fish and other wildlife using underwater video. Methods for automated analysis of underwater video are needed to lower the costs of analysis and improve accuracy. A deep learning model, YOLO, was trained to recognize fish in underwater video using three very different datasets recorded at real-world water power sites. Training and testing with examples from all three datasets resulted in a mean average precision (mAP) score of 0.5392. To test how well a model could generalize to new datasets, the model was trained using examples from only two of the datasets and then tested on examples from all three datasets. The resulting model could not recognize fish in the dataset that was not part of the training set. The mAP scores on the other two datasets that were included in the training set were higher than the scores achieved by the model trained on all three datasets. These results indicate that different methods are needed in order to produce a trained model that can generalize to new data sets such as those encountered in real world applications.Comment: Accepted at CSCI 201

    Internet of Underwater Things and Big Marine Data Analytics -- A Comprehensive Survey

    Full text link
    The Internet of Underwater Things (IoUT) is an emerging communication ecosystem developed for connecting underwater objects in maritime and underwater environments. The IoUT technology is intricately linked with intelligent boats and ships, smart shores and oceans, automatic marine transportations, positioning and navigation, underwater exploration, disaster prediction and prevention, as well as with intelligent monitoring and security. The IoUT has an influence at various scales ranging from a small scientific observatory, to a midsized harbor, and to covering global oceanic trade. The network architecture of IoUT is intrinsically heterogeneous and should be sufficiently resilient to operate in harsh environments. This creates major challenges in terms of underwater communications, whilst relying on limited energy resources. Additionally, the volume, velocity, and variety of data produced by sensors, hydrophones, and cameras in IoUT is enormous, giving rise to the concept of Big Marine Data (BMD), which has its own processing challenges. Hence, conventional data processing techniques will falter, and bespoke Machine Learning (ML) solutions have to be employed for automatically learning the specific BMD behavior and features facilitating knowledge extraction and decision support. The motivation of this paper is to comprehensively survey the IoUT, BMD, and their synthesis. It also aims for exploring the nexus of BMD with ML. We set out from underwater data collection and then discuss the family of IoUT data communication techniques with an emphasis on the state-of-the-art research challenges. We then review the suite of ML solutions suitable for BMD handling and analytics. We treat the subject deductively from an educational perspective, critically appraising the material surveyed.Comment: 54 pages, 11 figures, 19 tables, IEEE Communications Surveys & Tutorials, peer-reviewed academic journa

    Deep learning for internet of underwater things and ocean data analytics

    Get PDF
    The Internet of Underwater Things (IoUT) is an emerging technological ecosystem developed for connecting objects in maritime and underwater environments. IoUT technologies are empowered by an extreme number of deployed sensors and actuators. In this thesis, multiple IoUT sensory data are augmented with machine intelligence for forecasting purposes

    Learning Transferable Representations for Visual Recognition

    Get PDF
    In the last half-decade, a new renaissance of machine learning originates from the applications of convolutional neural networks to visual recognition tasks. It is believed that a combination of big curated data and novel deep learning techniques can lead to unprecedented results. However, the increasingly large training data is still a drop in the ocean compared with scenarios in the wild. In this literature, we focus on learning transferable representation in the neural networks to ensure the models stay robust, even given different data distributions. We present three exemplar topics in three chapters, respectively: zero-shot learning, domain adaptation, and generalizable adversarial attack. By zero-shot learning, we enable models to predict labels not seen in the training phase. By domain adaptation, we improve a model\u27s performance on the target domain by mitigating its discrepancy from a labeled source model, without any target annotation. Finally, the generalization adversarial attack focuses on learning an adversarial camouflage that ideally would work in every possible scenario. Despite sharing the same transfer learning philosophy, each of the proposed topics poses a unique challenge requiring a unique solution. In each chapter, we introduce the problem as well as present our solution to the problem. We also discuss some other researchers\u27 approaches and compare our solution to theirs in the experiments

    Unsupervised underwater fish detection fusing flow and objectiveness

    No full text
    Scientists today face an onerous task to manually annotate vast amount of underwater video data for fish stock assessment. In this paper, we propose a robust and unsupervised deep learning algorithm to automatically detect fish and thereby easing the burden of manual annotation. The algorithm automates fish sampling in the training stage by fusion of optical flow segments and objective proposals. We auto-generate large amounts of fish samples from the detection of flow motion and based on the flow-objectiveness overlap probability we annotate the true-false samples. We also adapt a biased training weight towards negative samples to reduce noise. In detection, in addition to fused regions, we used a Modified Non-Maximum Suppression (MNMS) algorithm to reduce false classifications on part of the fishes from the aggressive NMS approach. We exhaustively tested our algorithms using NOAA provided, luminance-only underwater fish videos. Our tests have shown that Average Precision (AP) of detection improved by about 10% compared to non-fusion approach and about another 10% by using MNMS
    corecore