440 research outputs found

    An Artificial Intelligence Approach to Tumor Volume Delineation

    Get PDF
    Postponed access: the file will be accessible after 2023-11-14Masteroppgave for radiograf/bioingeniørRABD395MAMD-HELS

    Deep learning facilitates fully automated brain image registration of optoacoustic tomography and magnetic resonance imaging

    Full text link
    Multispectral optoacoustic tomography (MSOT) is an emerging optical imaging method providing multiplex molecular and functional information from the rodent brain. It can be greatly augmented by magnetic resonance imaging (MRI) which offers excellent soft-tissue contrast and high-resolution brain anatomy. Nevertheless, registration of MSOT-MRI images remains challenging, chiefly due to the entirely different image contrast rendered by these two modalities. Previously reported registration algorithms mostly relied on manual user-dependent brain segmentation, which compromised data interpretation and quantification. Here we propose a fully automated registration method for MSOT-MRI multimodal imaging empowered by deep learning. The automated workflow includes neural network-based image segmentation to generate suitable masks, which are subsequently registered using an additional neural network. The performance of the algorithm is showcased with datasets acquired by cross-sectional MSOT and high-field MRI preclinical scanners. The automated registration method is further validated with manual and half-automated registration, demonstrating its robustness and accuracy

    Computer assisted enhanced volumetric segmentation magnetic imaging data using a mixture of artificial neural networks

    Full text link
    An accurate computer-assisted method able to perform regional segmentation on 3D single modality images and measure its volume is designed using a mixture of unsupervised and supervised artificial neural networks. Firstly, an unsupervised artificial neural network is used to estimate representative textures that appear in the images. The region of interest of the resultant images is selected by means of a multi-layer perceptron after a training using a single sample slice, which contains a central portion of the 3D region of interest. The method was applied to magnetic resonance imaging data collected from an experimental acute inflammatory model (T(2) weighted) and from a clinical study of human Alzheimer's disease (T(1) weighted) to evaluate the proposed method. In the first case, a high correlation and parallelism was registered between the volumetric measurements, of the injured and healthy tissue, by the proposed method with respect to the manual measurements (r = 0.82 and p < 0.05) and to the histopathological studies (r = 0.87 and p < 0.05). The method was also applied to the clinical studies, and similar results were derived of the manual and semi-automatic volumetric measurement of both hippocampus and the corpus callosum (0.95 and 0.88

    Two and three dimensional segmentation of multimodal imagery

    Get PDF
    The role of segmentation in the realms of image understanding/analysis, computer vision, pattern recognition, remote sensing and medical imaging in recent years has been significantly augmented due to accelerated scientific advances made in the acquisition of image data. This low-level analysis protocol is critical to numerous applications, with the primary goal of expediting and improving the effectiveness of subsequent high-level operations by providing a condensed and pertinent representation of image information. In this research, we propose a novel unsupervised segmentation framework for facilitating meaningful segregation of 2-D/3-D image data across multiple modalities (color, remote-sensing and biomedical imaging) into non-overlapping partitions using several spatial-spectral attributes. Initially, our framework exploits the information obtained from detecting edges inherent in the data. To this effect, by using a vector gradient detection technique, pixels without edges are grouped and individually labeled to partition some initial portion of the input image content. Pixels that contain higher gradient densities are included by the dynamic generation of segments as the algorithm progresses to generate an initial region map. Subsequently, texture modeling is performed and the obtained gradient, texture and intensity information along with the aforementioned initial partition map are used to perform a multivariate refinement procedure, to fuse groups with similar characteristics yielding the final output segmentation. Experimental results obtained in comparison to published/state-of the-art segmentation techniques for color as well as multi/hyperspectral imagery, demonstrate the advantages of the proposed method. Furthermore, for the purpose of achieving improved computational efficiency we propose an extension of the aforestated methodology in a multi-resolution framework, demonstrated on color images. Finally, this research also encompasses a 3-D extension of the aforementioned algorithm demonstrated on medical (Magnetic Resonance Imaging / Computed Tomography) volumes
    corecore