35 research outputs found

    ESTIMATES OF FOREST CHARACTERISTICS DERIVED FROM REMOTELY SENSED IMAGERY AND FIELD SAMPLES: APPLICABLE SCALES, APPROPRIATE STUDY DESIGN, AND RELEVANCE TO FOREST MANAGEMENT

    Get PDF
    Information and knowledge about a given forested landscape drives forest management decisions. Within forest management though, information that adequately describes various characteristics of the forested environment in the spatial detail desired to make fully informed management decisions is often limited. Key metrics such as species composition, tree basal area, and tree density are typically too expensive to collect using ground-based inventory methods alone across broad extents for forest level planning (thousands of ha) at fine spatial detail that permit use at tactical spatial scales (tens of ha). However, quantifying these metrics accurately, in spatial detail, across broad landscapes is important to inform the management process. While relating remotely sensed data to classical ground-based survey data through modeling has shown promise for describing landscapes at the spatial detail need to inform planning and tactical scale projects, questions remain related to integrating both sources of data, sample design, and linking plots to remotely sensed data. This dissertation addresses critical aspects of these questions by: quantifying and mitigating the impact of co-registration errors; comparing various sample designs and estimation techniques using simulated ground-based information, remotely sensed data, and a variety of modeling techniques; developing enhanced image normalization routines; and creating an ensemble approach to estimating various forest characteristics that describe species composition, basal area, and tree density. This dissertation address knowledge gaps in the fields of forestry, remote sensing, data science, and decision science that can be used to efficiently and effectively inform the natural resource management decision-making process at fine spatial resolutions across broad extents

    Synthetic Aperture Radar (SAR) Meets Deep Learning

    Get PDF
    This reprint focuses on the application of the combination of synthetic aperture radars and depth learning technology. It aims to further promote the development of SAR image intelligent interpretation technology. A synthetic aperture radar (SAR) is an important active microwave imaging sensor, whose all-day and all-weather working capacity give it an important place in the remote sensing community. Since the United States launched the first SAR satellite, SAR has received much attention in the remote sensing community, e.g., in geological exploration, topographic mapping, disaster forecast, and traffic monitoring. It is valuable and meaningful, therefore, to study SAR-based remote sensing applications. In recent years, deep learning represented by convolution neural networks has promoted significant progress in the computer vision community, e.g., in face recognition, the driverless field and Internet of things (IoT). Deep learning can enable computational models with multiple processing layers to learn data representations with multiple-level abstractions. This can greatly improve the performance of various applications. This reprint provides a platform for researchers to handle the above significant challenges and present their innovative and cutting-edge research results when applying deep learning to SAR in various manuscript types, e.g., articles, letters, reviews and technical reports

    Bayesian plug & play methods for inverse problems in imaging.

    Get PDF
    Thèse de Doctorat de Mathématiques Appliquées (Université de Paris)Tesis de Doctorado en Ingeniería Eléctrica (Universidad de la República)This thesis deals with Bayesian methods for solving ill-posed inverse problems in imaging with learnt image priors. The first part of this thesis (Chapter 3) concentrates on two particular problems, namely joint denoising and decompression and multi-image super-resolution. After an extensive study of the noise statistics for these problem in the transformed (wavelet or Fourier) domain, we derive two novel algorithms to solve this particular inverse problem. One of them is based on a multi-scale self-similarity prior and can be seen as a transform-domain generalization of the celebrated non-local bayes algorithm to the case of non-Gaussian noise. The second one uses a neural-network denoiser to implicitly encode the image prior, and a splitting scheme to incorporate this prior into an optimization algorithm to find a MAP-like estimator. The second part of this thesis concentrates on the Variational AutoEncoder (VAE) model and some of its variants that show its capabilities to explicitly capture the probability distribution of high-dimensional datasets such as images. Based on these VAE models, we propose two ways to incorporate them as priors for general inverse problems in imaging : • The first one (Chapter 4) computes a joint (space-latent) MAP estimator named Joint Posterior Maximization using an Autoencoding Prior (JPMAP). We show theoretical and experimental evidence that the proposed objective function satisfies a weak bi-convexity property which is sufficient to guarantee that our optimization scheme converges to a stationary point. Experimental results also show the higher quality of the solutions obtained by our JPMAP approach with respect to other non-convex MAP approaches which more often get stuck in spurious local optima. • The second one (Chapter 5) develops a Gibbs-like posterior sampling algorithm for the exploration of posterior distributions of inverse problems using multiple chains and a VAE as image prior. We showhowto use those samples to obtain MMSE estimates and their corresponding uncertainty.Cette thèse traite des méthodes bayésiennes pour résoudre des problèmes inverses mal posés en imagerie avec des distributions a priori d’images apprises. La première partie de cette thèse (Chapitre 3) se concentre sur deux problèmes partic-uliers, à savoir le débruitage et la décompression conjoints et la super-résolutionmulti-images. Après une étude approfondie des statistiques de bruit pour ces problèmes dans le domaine transformé (ondelettes ou Fourier), nous dérivons deuxnouveaux algorithmes pour résoudre ce problème inverse particulie. L’un d’euxest basé sur une distributions a priori d’auto-similarité multi-échelle et peut êtrevu comme une généralisation du célèbre algorithme de Non-Local Bayes au cas dubruit non gaussien. Le second utilise un débruiteur de réseau de neurones pourcoder implicitement la distribution a priori, et un schéma de division pour incor-porer cet distribution dans un algorithme d’optimisation pour trouver un estima-teur de type MAP. La deuxième partie de cette thèse se concentre sur le modèle Variational Auto Encoder (VAE) et certaines de ses variantes qui montrent ses capacités à capturer explicitement la distribution de probabilité d’ensembles de données de grande dimension tels que les images. Sur la base de ces modèles VAE, nous proposons deuxmanières de les incorporer comme distribution a priori pour les problèmes inverses généraux en imagerie: •Le premier (Chapitre 4) calcule un estimateur MAP conjoint (espace-latent) nommé Joint Posterior Maximization using an Autoencoding Prior (JPMAP). Nous montrons des preuves théoriques et expérimentales que la fonction objectif proposée satisfait une propriété de bi-convexité faible qui est suffisante pour garantir que notre schéma d’optimisation converge vers un pointstationnaire. Les résultats expérimentaux montrent également la meilleurequalité des solutions obtenues par notre approche JPMAP par rapport à d’autresapproches MAP non convexes qui restent le plus souvent bloquées dans desminima locaux. •Le second (Chapitre 5) développe un algorithme d’échantillonnage a poste-riori de type Gibbs pour l’exploration des distributions a posteriori de problèmes inverses utilisant des chaînes multiples et un VAE comme distribution a priori. Nous montrons comment utiliser ces échantillons pour obtenir desestimations MMSE et leur incertitude correspondante.En esta tesis se estudian métodos bayesianos para resolver problemas inversos mal condicionados en imágenes usando distribuciones a priori entrenadas. La primera parte de esta tesis (Capítulo 3) se concentra en dos problemas particulares, a saber, el de eliminación de ruido y descompresión conjuntos, y el de superresolución a partir de múltiples imágenes. Después de un extenso estudio de las estadísticas del ruido para estos problemas en el dominio transformado (wavelet o Fourier),derivamos dos algoritmos nuevos para resolver este problema inverso en particular. Uno de ellos se basa en una distribución a priori de autosimilitud multiescala y puede verse como una generalización al dominio wavelet del célebre algoritmo Non-Local Bayes para el caso de ruido no Gaussiano. El segundo utiliza un algoritmo de eliminación de ruido basado en una red neuronal para codificar implícitamente la distribución a priori de las imágenes y un esquema de relajación para incorporar esta distribución en un algoritmo de optimización y así encontrar un estimador similar al MAP. La segunda parte de esta tesis se concentra en el modelo Variational AutoEncoder (VAE) y algunas de sus variantes que han mostrado capacidad para capturar explícitamente la distribución de probabilidad de conjuntos de datos en alta dimensión como las imágenes. Basándonos en estos modelos VAE, proponemos dos formas de incorporarlos como distribución a priori para problemas inversos genéricos en imágenes : •El primero (Capítulo 4) calcula un estimador MAP conjunto (espacio imagen y latente) llamado Joint Posterior Maximization using an Autoencoding Prior (JPMAP). Mostramos evidencia teórica y experimental de que la función objetivo propuesta satisface una propiedad de biconvexidad débil que es suficiente para garantizar que nuestro esquema de optimización converge a un punto estacionario. Los resultados experimentales también muestran la mayor calidad de las soluciones obtenidas por nuestro enfoque JPMAP con respecto a otros enfoques MAP no convexos que a menudo se atascan en mínimos locales espurios. •El segundo (Capítulo 5) desarrolla un algoritmo de muestreo tipo Gibbs parala exploración de la distribución a posteriori de problemas inversos utilizando múltiples cadenas y un VAE como distribución a priori. Mostramos cómo usar esas muestras para obtener estimaciones de MMSE y su correspondiente incertidumbr

    Camera-independent learning and image quality assessment for super-resolution

    Get PDF
    An increasing number of applications require high-resolution images in situations where the access to the sensor and the knowledge of its specifications are limited. In this thesis, the problem of blind super-resolution is addressed, here defined as the estimation of a high-resolution image from one or more low-resolution inputs, under the condition that the degradation model parameters are unknown. The assessment of super-resolved results, using objective measures of image quality, is also addressed.Learning-based methods have been successfully applied to the single frame super-resolution problem in the past. However, sensor characteristics such as the Point Spread Function (PSF) must often be known. In this thesis, a learning-based approach is adapted to work without the knowledge of the PSF thus making the framework camera-independent. However, the goal is not only to super-resolve an image under this limitation, but also to provide an estimation of the best PSF, consisting of a theoretical model with one unknown parameter.In particular, two extensions of a method performing belief propagation on a Markov Random Field are presented. The first method finds the best PSF parameter by performing a search for the minimum mean distance between training examples and patches from the input image. In the second method, the best PSF parameter and the super-resolution result are found simultaneously by providing a range of possible PSF parameters from which the super-resolution algorithm will choose from. For both methods, a first estimate is obtained through blind deconvolution and an uncertainty is calculated in order to restrict the search.Both camera-independent adaptations are compared and analyzed in various experiments, and a set of key parameters are varied to determine their effect on both the super-resolution and the PSF parameter recovery results. The use of quality measures is thus essential to quantify the improvements obtained from the algorithms. A set of measures is chosen that represents different aspects of image quality: the signal fidelity, the perceptual quality and the localization and scale of the edges.Results indicate that both methods improve similarity to the ground truth and can in general refine the initial PSF parameter estimate towards the true value. Furthermore, the similarity measure results show that the chosen learning-based framework consistently improves a measure designed for perceptual quality

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Remote Sensing for Land Administration 2.0

    Get PDF
    The reprint “Land Administration 2.0” is an extension of the previous reprint “Remote Sensing for Land Administration”, another Special Issue in Remote Sensing. This reprint unpacks the responsible use and integration of emerging remote sensing techniques into the domain of land administration, including land registration, cadastre, land use planning, land valuation, land taxation, and land development. The title was chosen as “Land Administration 2.0” in reference to both this Special Issue being the second volume on the topic “Land Administration” and the next-generation requirements of land administration including demands for 3D, indoor, underground, real-time, high-accuracy, lower-cost, and interoperable land data and information

    Image Restoration

    Get PDF
    This book represents a sample of recent contributions of researchers all around the world in the field of image restoration. The book consists of 15 chapters organized in three main sections (Theory, Applications, Interdisciplinarity). Topics cover some different aspects of the theory of image restoration, but this book is also an occasion to highlight some new topics of research related to the emergence of some original imaging devices. From this arise some real challenging problems related to image reconstruction/restoration that open the way to some new fundamental scientific questions closely related with the world we interact with

    Understanding deep architectures and the effect of unsupervised pre-training

    Full text link
    Cette thèse porte sur une classe d'algorithmes d'apprentissage appelés architectures profondes. Il existe des résultats qui indiquent que les représentations peu profondes et locales ne sont pas suffisantes pour la modélisation des fonctions comportant plusieurs facteurs de variation. Nous sommes particulièrement intéressés par ce genre de données car nous espérons qu'un agent intelligent sera en mesure d'apprendre à les modéliser automatiquement; l'hypothèse est que les architectures profondes sont mieux adaptées pour les modéliser. Les travaux de Hinton (2006) furent une véritable percée, car l'idée d'utiliser un algorithme d'apprentissage non-supervisé, les machines de Boltzmann restreintes, pour l'initialisation des poids d'un réseau de neurones supervisé a été cruciale pour entraîner l'architecture profonde la plus populaire, soit les réseaux de neurones artificiels avec des poids totalement connectés. Cette idée a été reprise et reproduite avec succès dans plusieurs contextes et avec une variété de modèles. Dans le cadre de cette thèse, nous considérons les architectures profondes comme des biais inductifs. Ces biais sont représentés non seulement par les modèles eux-mêmes, mais aussi par les méthodes d'entraînement qui sont souvent utilisés en conjonction avec ceux-ci. Nous désirons définir les raisons pour lesquelles cette classe de fonctions généralise bien, les situations auxquelles ces fonctions pourront être appliquées, ainsi que les descriptions qualitatives de telles fonctions. L'objectif de cette thèse est d'obtenir une meilleure compréhension du succès des architectures profondes. Dans le premier article, nous testons la concordance entre nos intuitions---que les réseaux profonds sont nécessaires pour mieux apprendre avec des données comportant plusieurs facteurs de variation---et les résultats empiriques. Le second article est une étude approfondie de la question: pourquoi l'apprentissage non-supervisé aide à mieux généraliser dans un réseau profond? Nous explorons et évaluons plusieurs hypothèses tentant d'élucider le fonctionnement de ces modèles. Finalement, le troisième article cherche à définir de façon qualitative les fonctions modélisées par un réseau profond. Ces visualisations facilitent l'interprétation des représentations et invariances modélisées par une architecture profonde.This thesis studies a class of algorithms called deep architectures. We argue that models that are based on a shallow composition of local features are not appropriate for the set of real-world functions and datasets that are of interest to us, namely data with many factors of variation. Modelling such functions and datasets is important if we are hoping to create an intelligent agent that can learn from complicated data. Deep architectures are hypothesized to be a step in the right direction, as they are compositions of nonlinearities and can learn compact distributed representations of data with many factors of variation. Training fully-connected artificial neural networks---the most common form of a deep architecture---was not possible before Hinton (2006) showed that one can use stacks of unsupervised Restricted Boltzmann Machines to initialize or pre-train a supervised multi-layer network. This breakthrough has been influential, as the basic idea of using unsupervised learning to improve generalization in deep networks has been reproduced in a multitude of other settings and models. In this thesis, we cast the deep learning ideas and techniques as defining a special kind of inductive bias. This bias is defined not only by the kind of functions that are eventually represented by such deep models, but also by the learning process that is commonly used for them. This work is a study of the reasons for why this class of functions generalizes well, the situations where they should work well, and the qualitative statements that one could make about such functions. This thesis is thus an attempt to understand why deep architectures work. In the first of the articles presented we study the question of how well our intuitions about the need for deep models correspond to functions that they can actually model well. In the second article we perform an in-depth study of why unsupervised pre-training helps deep learning and explore a variety of hypotheses that give us an intuition for the dynamics of learning in such architectures. Finally, in the third article, we want to better understand what a deep architecture models, qualitatively speaking. Our visualization approach enables us to understand the representations and invariances modelled and learned by deeper layers

    Sur la Restauration et l'Edition de Vidéo : Détection de Rayures et Inpainting de Scènes Complexes

    Get PDF
    The inevitable degradation of visual content such as images and films leads to the goal ofimage and video restoration. In this thesis, we look at two specific restoration problems : the detection ofline scratches in old films and the automatic completion of videos, or video inpainting as it is also known.Line scratches are caused when the film physically rubs against a mechanical part. This origin resultsin the specific characteristics of the defect, such as verticality and temporal persistence. We propose adetection algorithm based on the statistical approach known as a contrario methods. We also proposea temporal filtering step to remove false alarms present in the first detection step. Comparisons withprevious work show improved recall and precision, and robustness with respect to the presence of noiseand clutter in the film.The second part of the thesis concerns video inpainting. We propose an algorithm based on theminimisation of a patch-based functional of the video content. In this framework, we address the followingproblems : extremely high execution times, the correct handling of textures in the video and inpaintingwith moving cameras. We also address some convergence issues in a very simplified inpainting context.La degradation inévitable des contenus visuels (images, films) conduit nécessairementà la tâche de la restauration des images et des vidéos. Dans cetre thèse, nous nous intéresserons àdeux sous-problèmes de restauration : la détection des rayures dans les vieux films, et le remplissageautomatique des vidéos (“inpainting vidéo en anglais).En général, les rayures sont dues aux frottements de la pellicule du film avec un objet lors de laprojection du film. Les origines physiques de ce défaut lui donnent des caractéristiques très particuliers.Les rayures sont des lignes plus ou moins verticales qui peuvent être blanches ou noires (ou parfois encouleur) et qui sont temporellement persistantes, c’est-à-dire qu’elles ont une position qui est continuedans le temps. Afin de détecter ces défauts, nous proposons d’abord un algorithme de détection basésur un ensemble d’approches statistiques appelées les méthodes a contrario. Cet algorithme fournitune détection précise et robuste aux bruits et aux textures présentes dans l’image. Nous proposonségalement une étape de filtrage temporel afin d’écarter les fausses alarmes de la première étape dedétection. Celle-ci améliore la précision de l’algorithme en analysant le mouvement des détections spatiales.L’ensemble de l’algorithme (détection spatiale et filtrage temporel) est comparé à des approchesde la littérature et montre un rappel et une précision grandement améliorés.La deuxième partie de cette thèse est consacrée à l’inpainting vidéo. Le but ici est de remplirune région d’une vidéo avec un contenu qui semble visuellement cohérent et convaincant. Il existeune pléthore de méthodes qui traite ce problème dans le cas des images. La littérature dans le casdes vidéos est plus restreinte, notamment car le temps d’exécution représente un véritable obstacle.Nous proposons un algorithme d’inpainting vidéo qui vise l’optimisation d’une fonctionnelle d’énergiequi intègre la notion de patchs, c’est-à-dire des petits cubes de contenu vidéo. Nous traitons d’abord leprobl’‘eme du temps d’exécution avant d’attaquer celui de l’inpainting satisfaisant des textures dans lesvidéos. Nous traitons également le cas des vidéos dont le fond est en mouvement ou qui ont été prisesavec des caméras en mouvement. Enfin, nous nous intéressons à certaines questions de convergencede l’algorithme dans des cas très simplifiés

    Object Recognition

    Get PDF
    Vision-based object recognition tasks are very familiar in our everyday activities, such as driving our car in the correct lane. We do these tasks effortlessly in real-time. In the last decades, with the advancement of computer technology, researchers and application developers are trying to mimic the human's capability of visually recognising. Such capability will allow machine to free human from boring or dangerous jobs
    corecore