106 research outputs found

    Lifelong Learning of Spatiotemporal Representations with Dual-Memory Recurrent Self-Organization

    Get PDF
    Artificial autonomous agents and robots interacting in complex environments are required to continually acquire and fine-tune knowledge over sustained periods of time. The ability to learn from continuous streams of information is referred to as lifelong learning and represents a long-standing challenge for neural network models due to catastrophic forgetting. Computational models of lifelong learning typically alleviate catastrophic forgetting in experimental scenarios with given datasets of static images and limited complexity, thereby differing significantly from the conditions artificial agents are exposed to. In more natural settings, sequential information may become progressively available over time and access to previous experience may be restricted. In this paper, we propose a dual-memory self-organizing architecture for lifelong learning scenarios. The architecture comprises two growing recurrent networks with the complementary tasks of learning object instances (episodic memory) and categories (semantic memory). Both growing networks can expand in response to novel sensory experience: the episodic memory learns fine-grained spatiotemporal representations of object instances in an unsupervised fashion while the semantic memory uses task-relevant signals to regulate structural plasticity levels and develop more compact representations from episodic experience. For the consolidation of knowledge in the absence of external sensory input, the episodic memory periodically replays trajectories of neural reactivations. We evaluate the proposed model on the CORe50 benchmark dataset for continuous object recognition, showing that we significantly outperform current methods of lifelong learning in three different incremental learning scenario

    Gated Linear Networks for Continual Learning in a Class-Incremental with Repetition Scenario

    Get PDF
    Il continual learning, che comporta l'acquisizione incrementale di conoscenze nel tempo, è un problema impegnativo in ambienti complessi in cui la distribuzione dei dati può cambiare nel tempo. Nonostante i grandi risultati ottenuti dalle reti neurali nel risolvere una grande varietà di compiti, fanno ancora fatica a raggiungere le stesse buone prestazioni in un ambiente di apprendimento continuo, soffrendo di un problema noto come catastrophic forgetting. Questo problema, che consiste nella tendenza di un modello a sovrascrivere vecchie informazioni quando ne vengono presentate di nuove, è stato affrontato attraverso una varietà di strategie che adattano il modello in diversi modi. Tra queste, in questo lavoro ci concentreremo sulle Gated Linear Networks (GLN), un tipo di modelli che si basano su un meccanismo di gating per migliorare l'archiviazione e il recupero delle informazioni nel tempo. Questa classe di modelli è già stata applicata al continual learning con risultati finora promettenti, ma sempre in framework estremamente semplificati. In questo lavoro cercheremo di definire un ambiente di apprendimento continuo più complesso e di adattare i GLN alle crescenti sfide che questo ambiente presenterà, valutandone i punti di forza ed i limiti. In particolare, abbiamo scoperto che la presenza di una fase di encoding può aiutare a rendere un set di dati complessi più spazialmente separabile e quindi rendere i GLN più efficaci, e che il passaggio a uno scenario Class-Incremental con Ripetizioni è utile sia per aumentare il realismo del framework sia per facilitare l'apprendimento.Continual learning, which involves the incremental acquisition of knowledge over time, is a challenging problem in complex environments where the distribution of data may change over time. Despite the great results obtained by neural networks in solving a great variety of tasks they still struggle in showing the same strong performance in a continual learning environment, suffering from a problem known as catastrophic forgetting. This problem, that consists in a model's tendency to overwrite old knowledge when new one is presented, has been dealt with through a variety of strategies that adapt the models on different levels. Among those, in this work we will focus on Gated Linear Networks (GLNs), a type of models that rely on a gating mechanism to improve the storage and retrieval of information over time. This class of models has already been applied to continual learning with promising results, but always in extremely simplified frameworks. In this work we will try to define a more complex continual learning environment and to adapt GLNs to the increased challenges that this environment will present, evaluating their strengths and their limitations. In particular, we found that performing an encoding step can help making a complex dataset more spatially separable and therefore making the GLNs more effective, and that switching to a Class-Incremental with Repetition scenario is useful both to increase the realism of the framework while easing the learning difficulty

    A Concept for Deployment and Evaluation of Unsupervised Domain Adaptation in Cognitive Perception Systems

    Get PDF
    Jüngste Entwicklungen im Bereich des tiefen Lernens ermöglichen Perzeptionssystemen datengetrieben Wissen über einen vordefinierten Betriebsbereich, eine sogenannte Domäne, zu gewinnen. Diese Verfahren des überwachten Lernens werden durch das Aufkommen groß angelegter annotierter Datensätze und immer leistungsfähigerer Prozessoren vorangetrieben und zeigen unübertroffene Performanz bei Perzeptionsaufgaben in einer Vielzahl von Anwendungsbereichen.Jedoch sind überwacht-trainierte neuronale Netze durch die Menge an verfügbaren annotierten Daten limitiert und dies wiederum findet in einem begrenzten Betriebsbereich Ausdruck. Dabei beruht überwachtes Lernen stark auf manuell durchzuführender Datenannotation. Insbesondere durch die ständig steigende Verfügbarkeit von nicht annotierten großen Datenmengen ist der Gebrauch von unüberwachter Domänenanpassung entscheidend. Verfahren zur unüberwachten Domänenanpassung sind meist nicht geeignet, um eine notwendige Inbetriebnahme des neuronalen Netzes in einer zusätzlichen Domäne zu gewährleisten. Darüber hinaus sind vorhandene Metriken häufig unzureichend für eine auf die Anwendung der domänenangepassten neuronalen Netzen ausgerichtete Validierung. Der Hauptbeitrag der vorliegenden Dissertation besteht aus neuen Konzepten zur unüberwachten Domänenanpassung. Basierend auf einer Kategorisierung von Domänenübergängen und a priori verfügbaren Wissensrepräsentationen durch ein überwacht-trainiertes neuronales Netz wird eine unüberwachte Domänenanpassung auf nicht annotierten Daten ermöglicht. Um die kontinuierliche Bereitstellung von neuronalen Netzen für die Anwendung in der Perzeption zu adressieren, wurden neuartige Verfahren speziell für die unüberwachte Erweiterung des Betriebsbereichs eines neuronalen Netzes entwickelt. Beispielhafte Anwendungsfälle des Fahrzeugsehens zeigen, wie die neuartigen Verfahren kombiniert mit neu entwickelten Metriken zur kontinuierlichen Inbetriebnahme von neuronalen Netzen auf nicht annotierten Daten beitragen. Außerdem werden die Implementierungen aller entwickelten Verfahren und Algorithmen dargestellt und öffentlich zugänglich gemacht. Insbesondere wurden die neuartigen Verfahren erfolgreich auf die unüberwachte Domänenanpassung, ausgehend von der Tag- auf die Nachtobjekterkennung im Bereich des Fahrzeugsehens angewendet

    Performance Analysis Of Data-Driven Algorithms In Detecting Intrusions On Smart Grid

    Get PDF
    The traditional power grid is no longer a practical solution for power delivery due to several shortcomings, including chronic blackouts, energy storage issues, high cost of assets, and high carbon emissions. Therefore, there is a serious need for better, cheaper, and cleaner power grid technology that addresses the limitations of traditional power grids. A smart grid is a holistic solution to these issues that consists of a variety of operations and energy measures. This technology can deliver energy to end-users through a two-way flow of communication. It is expected to generate reliable, efficient, and clean power by integrating multiple technologies. It promises reliability, improved functionality, and economical means of power transmission and distribution. This technology also decreases greenhouse emissions by transferring clean, affordable, and efficient energy to users. Smart grid provides several benefits, such as increasing grid resilience, self-healing, and improving system performance. Despite these benefits, this network has been the target of a number of cyber-attacks that violate the availability, integrity, confidentiality, and accountability of the network. For instance, in 2021, a cyber-attack targeted a U.S. power system that shut down the power grid, leaving approximately 100,000 people without power. Another threat on U.S. Smart Grids happened in March 2018 which targeted multiple nuclear power plants and water equipment. These instances represent the obvious reasons why a high level of security approaches is needed in Smart Grids to detect and mitigate sophisticated cyber-attacks. For this purpose, the US National Electric Sector Cybersecurity Organization and the Department of Energy have joined their efforts with other federal agencies, including the Cybersecurity for Energy Delivery Systems and the Federal Energy Regulatory Commission, to investigate the security risks of smart grid networks. Their investigation shows that smart grid requires reliable solutions to defend and prevent cyber-attacks and vulnerability issues. This investigation also shows that with the emerging technologies, including 5G and 6G, smart grid may become more vulnerable to multistage cyber-attacks. A number of studies have been done to identify, detect, and investigate the vulnerabilities of smart grid networks. However, the existing techniques have fundamental limitations, such as low detection rates, high rates of false positives, high rates of misdetection, data poisoning, data quality and processing, lack of scalability, and issues regarding handling huge volumes of data. Therefore, these techniques cannot ensure safe, efficient, and dependable communication for smart grid networks. Therefore, the goal of this dissertation is to investigate the efficiency of machine learning in detecting cyber-attacks on smart grids. The proposed methods are based on supervised, unsupervised machine and deep learning, reinforcement learning, and online learning models. These models have to be trained, tested, and validated, using a reliable dataset. In this dissertation, CICDDoS 2019 was used to train, test, and validate the efficiency of the proposed models. The results show that, for supervised machine learning models, the ensemble models outperform other traditional models. Among the deep learning models, densely neural network family provides satisfactory results for detecting and classifying intrusions on smart grid. Among unsupervised models, variational auto-encoder, provides the highest performance compared to the other unsupervised models. In reinforcement learning, the proposed Capsule Q-learning provides higher detection and lower misdetection rates, compared to the other model in literature. In online learning, the Online Sequential Euclidean Distance Routing Capsule Network model provides significantly better results in detecting intrusion attacks on smart grid, compared to the other deep online models
    corecore