96 research outputs found

    Low-Rank and Sparse Decomposition for Hyperspectral Image Enhancement and Clustering

    Get PDF
    In this dissertation, some new algorithms are developed for hyperspectral imaging analysis enhancement. Tensor data format is applied in hyperspectral dataset sparse and low-rank decomposition, which could enhance the classification and detection performance. And multi-view learning technique is applied in hyperspectral imaging clustering. Furthermore, kernel version of multi-view learning technique has been proposed, which could improve clustering performance. Most of low-rank and sparse decomposition algorithms are based on matrix data format for HSI analysis. As HSI contains high spectral dimensions, tensor based extended low-rank and sparse decomposition (TELRSD) is proposed in this dissertation for better performance of HSI classification with low-rank tensor part, and HSI detection with sparse tensor part. With this tensor based method, HSI is processed in 3D data format, and information between spectral bands and pixels maintain integrated during decomposition process. This proposed algorithm is compared with other state-of-art methods. And the experiment results show that TELRSD has the best performance among all those comparison algorithms. HSI clustering is an unsupervised task, which aims to group pixels into different groups without labeled information. Low-rank sparse subspace clustering (LRSSC) is the most popular algorithms for this clustering task. The spatial-spectral based multi-view low-rank sparse subspace clustering (SSMLC) algorithms is proposed in this dissertation, which extended LRSSC with multi-view learning technique. In this algorithm, spectral and spatial views are created to generate multi-view dataset of HSI, where spectral partition, morphological component analysis (MCA) and principle component analysis (PCA) are applied to create others views. Furthermore, kernel version of SSMLC (k-SSMLC) also has been investigated. The performance of SSMLC and k-SSMLC are compared with sparse subspace clustering (SSC), low-rank sparse subspace clustering (LRSSC), and spectral-spatial sparse subspace clustering (S4C). It has shown that SSMLC could improve the performance of LRSSC, and k-SSMLC has the best performance. The spectral clustering has been proved that it equivalent to non-negative matrix factorization (NMF) problem. In this case, NMF could be applied to the clustering problem. In order to include local and nonlinear features in data source, orthogonal NMF (ONMF), graph-regularized NMF (GNMF) and kernel NMF (k-NMF) has been proposed for better clustering performance. The non-linear orthogonal graph NMF combine both kernel, orthogonal and graph constraints in NMF (k-OGNMF), which push up the clustering performance further. In the HSI domain, kernel multi-view based orthogonal graph NMF (k-MOGNMF) is applied for subspace clustering, where k-OGNMF is extended with multi-view algorithm, and it has better performance and computation efficiency

    A REVIEW ON MULTIPLE-FEATURE-BASED ADAPTIVE SPARSE REPRESENTATION (MFASR) AND OTHER CLASSIFICATION TYPES

    Get PDF
    A new technique Multiple-feature-based adaptive sparse representation (MFASR) has been demonstrated for Hyperspectral Images (HSI's) classification. This method involves mainly in four steps at the various stages. The spectral and spatial information reflected from the original Hyperspectral Images with four various features. A shape adaptive (SA) spatial region is obtained in each pixel region at the second step. The algorithm namely sparse representation has applied to get the coefficients of sparse for each shape adaptive region in the form of matrix with multiple features. For each test pixel, the class label is determined with the help of obtained coefficients. The performances of MFASR have much better classification results than other classifiers in the terms of quantitative and qualitative percentage of results. This MFASR will make benefit of strong correlations that are obtained from different extracted features and this make use of effective features and effective adaptive sparse representation. Thus, the very high classification performance was achieved through this MFASR technique

    Hyperspectral Image Analysis through Unsupervised Deep Learning

    Get PDF
    Hyperspectral image (HSI) analysis has become an active research area in computer vision field with a wide range of applications. However, in order to yield better recognition and analysis results, we need to address two challenging issues of HSI, i.e., the existence of mixed pixels and its significantly low spatial resolution (LR). In this dissertation, spectral unmixing (SU) and hyperspectral image super-resolution (HSI-SR) approaches are developed to address these two issues with advanced deep learning models in an unsupervised fashion. A specific application, anomaly detection, is also studied, to show the importance of SU.Although deep learning has achieved the state-of-the-art performance on supervised problems, its practice on unsupervised problems has not been fully developed. To address the problem of SU, an untied denoising autoencoder is proposed to decompose the HSI into endmembers and abundances with non-negative and abundance sum-to-one constraints. The denoising capacity is incorporated into the network with a sparsity constraint to boost the performance of endmember extraction and abundance estimation.Moreover, the first attempt is made to solve the problem of HSI-SR using an unsupervised encoder-decoder architecture by fusing the LR HSI with the high-resolution multispectral image (MSI). The architecture is composed of two encoder-decoder networks, coupled through a shared decoder, to preserve the rich spectral information from the HSI network. It encourages the representations from both modalities to follow a sparse Dirichlet distribution which naturally incorporates the two physical constraints of HSI and MSI. And the angular difference between representations are minimized to reduce the spectral distortion.Finally, a novel detection algorithm is proposed through spectral unmixing and dictionary based low-rank decomposition, where the dictionary is constructed with mean-shift clustering and the coefficients of the dictionary is encouraged to be low-rank. Experimental evaluations show significant improvement on the performance of anomaly detection conducted on the abundances (through SU).The effectiveness of the proposed approaches has been evaluated thoroughly by extensive experiments, to achieve the state-of-the-art results

    Hyperspectral Remote Sensing Data Analysis and Future Challenges

    Full text link

    Advances in Hyperspectral Image Classification Methods for Vegetation and Agricultural Cropland Studies

    Get PDF
    Hyperspectral data are becoming more widely available via sensors on airborne and unmanned aerial vehicle (UAV) platforms, as well as proximal platforms. While space-based hyperspectral data continue to be limited in availability, multiple spaceborne Earth-observing missions on traditional platforms are scheduled for launch, and companies are experimenting with small satellites for constellations to observe the Earth, as well as for planetary missions. Land cover mapping via classification is one of the most important applications of hyperspectral remote sensing and will increase in significance as time series of imagery are more readily available. However, while the narrow bands of hyperspectral data provide new opportunities for chemistry-based modeling and mapping, challenges remain. Hyperspectral data are high dimensional, and many bands are highly correlated or irrelevant for a given classification problem. For supervised classification methods, the quantity of training data is typically limited relative to the dimension of the input space. The resulting Hughes phenomenon, often referred to as the curse of dimensionality, increases potential for unstable parameter estimates, overfitting, and poor generalization of classifiers. This is particularly problematic for parametric approaches such as Gaussian maximum likelihoodbased classifiers that have been the backbone of pixel-based multispectral classification methods. This issue has motivated investigation of alternatives, including regularization of the class covariance matrices, ensembles of weak classifiers, development of feature selection and extraction methods, adoption of nonparametric classifiers, and exploration of methods to exploit unlabeled samples via semi-supervised and active learning. Data sets are also quite large, motivating computationally efficient algorithms and implementations. This chapter provides an overview of the recent advances in classification methods for mapping vegetation using hyperspectral data. Three data sets that are used in the hyperspectral classification literature (e.g., Botswana Hyperion satellite data and AVIRIS airborne data over both Kennedy Space Center and Indian Pines) are described in Section 3.2 and used to illustrate methods described in the chapter. An additional high-resolution hyperspectral data set acquired by a SpecTIR sensor on an airborne platform over the Indian Pines area is included to exemplify the use of new deep learning approaches, and a multiplatform example of airborne hyperspectral data is provided to demonstrate transfer learning in hyperspectral image classification. Classical approaches for supervised and unsupervised feature selection and extraction are reviewed in Section 3.3. In particular, nonlinearities exhibited in hyperspectral imagery have motivated development of nonlinear feature extraction methods in manifold learning, which are outlined in Section 3.3.1.4. Spatial context is also important in classification of both natural vegetation with complex textural patterns and large agricultural fields with significant local variability within fields. Approaches to exploit spatial features at both the pixel level (e.g., co-occurrencebased texture and extended morphological attribute profiles [EMAPs]) and integration of segmentation approaches (e.g., HSeg) are discussed in this context in Section 3.3.2. Recently, classification methods that leverage nonparametric methods originating in the machine learning community have grown in popularity. An overview of both widely used and newly emerging approaches, including support vector machines (SVMs), Gaussian mixture models, and deep learning based on convolutional neural networks is provided in Section 3.4. Strategies to exploit unlabeled samples, including active learning and metric learning, which combine feature extraction and augmentation of the pool of training samples in an active learning framework, are outlined in Section 3.5. Integration of image segmentation with classification to accommodate spatial coherence typically observed in vegetation is also explored, including as an integrated active learning system. Exploitation of multisensor strategies for augmenting the pool of training samples is investigated via a transfer learning framework in Section 3.5.1.2. Finally, we look to the future, considering opportunities soon to be provided by new paradigms, as hyperspectral sensing is becoming common at multiple scales from ground-based and airborne autonomous vehicles to manned aircraft and space-based platforms

    Semi-supervised and unsupervised kernel-based novelty detection with application to remote sensing images

    Get PDF
    The main challenge of new information technologies is to retrieve intelligible information from the large volume of digital data gathered every day. Among the variety of existing data sources, the satellites continuously observing the surface of the Earth are key to the monitoring of our environment. The new generation of satellite sensors are tremendously increasing the possibilities of applications but also increasing the need for efficient processing methodologies in order to extract information relevant to the users' needs in an automatic or semi-automatic way. This is where machine learning comes into play to transform complex data into simplified products such as maps of land-cover changes or classes by learning from data examples annotated by experts. These annotations, also called labels, may actually be difficult or costly to obtain since they are established on the basis of ground surveys. As an example, it is extremely difficult to access a region recently flooded or affected by wildfires. In these situations, the detection of changes has to be done with only annotations from unaffected regions. In a similar way, it is difficult to have information on all the land-cover classes present in an image while being interested in the detection of a single one of interest. These challenging situations are called novelty detection or one-class classification in machine learning. In these situations, the learning phase has to rely only on a very limited set of annotations, but can exploit the large set of unlabeled pixels available in the images. This setting, called semi-supervised learning, allows significantly improving the detection. In this Thesis we address the development of methods for novelty detection and one-class classification with few or no labeled information. The proposed methodologies build upon the kernel methods, which take place within a principled but flexible framework for learning with data showing potentially non-linear feature relations. The thesis is divided into two parts, each one having a different assumption on the data structure and both addressing unsupervised (automatic) and semi-supervised (semi-automatic) learning settings. The first part assumes the data to be formed by arbitrary-shaped and overlapping clusters and studies the use of kernel machines, such as Support Vector Machines or Gaussian Processes. An emphasis is put on the robustness to noise and outliers and on the automatic retrieval of parameters. Experiments on multi-temporal multispectral images for change detection are carried out using only information from unchanged regions or none at all. The second part assumes high-dimensional data to lie on multiple low dimensional structures, called manifolds. We propose a method seeking a sparse and low-rank representation of the data mapped in a non-linear feature space. This representation allows us to build a graph, which is cut into several groups using spectral clustering. For the semi-supervised case where few labels of one class of interest are available, we study several approaches incorporating the graph information. The class labels can either be propagated on the graph, constrain spectral clustering or used to train a one-class classifier regularized by the given graph. Experiments on the unsupervised and oneclass classification of hyperspectral images demonstrate the effectiveness of the proposed approaches
    • …
    corecore