146 research outputs found

    Unsupervised SAR Image Segmentation Based on a Hierarchical TMF Model in the Discrete Wavelet Domain for Sea Area Detection

    Get PDF
    Unsupervised synthetic aperture radar (SAR) image segmentation is a fundamental preliminary processing step required for sea area detection in military applications. The purpose of this step is to classify large image areas into different segments to assist with identification of the sea area and the ship target within the image. The recently proposed triplet Markov field (TMF) model has been successfully used for segmentation of nonstationary SAR images. This letter presents a hierarchical TMF model in the discrete wavelet domain of unsupervised SAR image segmentation for sea area detection, which we have named the wavelet hierarchical TMF (WHTMF) model. The WHTMF model can precisely capture the global and local image characteristics in the two-pass computation of posterior distribution. The multiscale likelihood and the multiscale energy function are constructed to capture the intrascale and intrascale dependencies in a random field (X,U). To model the SAR data related to radar backscattering sources, the Gaussian distribution is utilized. The effectiveness of the proposed model for SAR image segmentation is evaluated using synthesized and real SAR data

    Multilayer Markov Random Field Models for Change Detection in Optical Remote Sensing Images

    Get PDF
    In this paper, we give a comparative study on three Multilayer Markov Random Field (MRF) based solutions proposed for change detection in optical remote sensing images, called Multicue MRF, Conditional Mixed Markov model, and Fusion MRF. Our purposes are twofold. On one hand, we highlight the significance of the focused model family and we set them against various state-of-the-art approaches through a thematic analysis and quantitative tests. We discuss the advantages and drawbacks of class comparison vs. direct approaches, usage of training data, various targeted application fields and different ways of ground truth generation, meantime informing the Reader in which roles the Multilayer MRFs can be efficiently applied. On the other hand we also emphasize the differences between the three focused models at various levels, considering the model structures, feature extraction, layer interpretation, change concept definition, parameter tuning and performance. We provide qualitative and quantitative comparison results using principally a publicly available change detection database which contains aerial image pairs and Ground Truth change masks. We conclude that the discussed models are competitive against alternative state-of-the-art solutions, if one uses them as pre-processing filters in multitemporal optical image analysis. In addition, they cover together a large range of applications, considering the different usage options of the three approaches

    Change detection in optical aerial images by a multilayer conditional mixed Markov model

    Get PDF
    In this paper we propose a probabilistic model for detecting relevant changes in registered aerial image pairs taken with the time differences of several years and in different seasonal conditions. The introduced approach, called the Conditional Mixed Markov model (CXM), is a combination of a mixed Markov model and a conditionally independent random field of signals. The model integrates global intensity statistics with local correlation and contrast features. A global energy optimization process ensures simultaneously optimal local feature selection and smooth, observation-consistent segmentation. Validation is given on real aerial image sets provided by the Hungarian Institute of Geodesy, Cartography and Remote Sensing and Google Earth

    Simultaneous motion detection and background reconstruction with a conditional mixed-state markov random field

    Get PDF
    In this work we present a new way of simultaneously solving the problems of motion detection and background image reconstruction. An accurate estimation of the background is only possible if we locate the moving objects. Meanwhile, a correct motion detection is achieved if we have a good available background model. The key of our joint approach is to define a single random process that can take two types of values, instead of defining two different processes, one symbolic (motion detection) and one numeric (background intensity estimation). It thus allows to exploit the (spatio-temporal) interaction between a decision (motion detection) and an estimation (intensity reconstruction) problem. Consequently, the meaning of solving both tasks jointly, is to obtain a single optimal estimate of such a process. The intrinsic interaction and simultaneity between both problems is shown to be better modeled within the so-called mixed-state statistical framework, which is extended here to account for symbolic states and conditional random fields. Experiments on real sequences and comparisons with existing motion detection methods support our proposal. Further implications for video sequence inpainting will be also discussed. © 2011 Springer Science+Business Media, LLC.postprin

    Semi-Huber Half Quadratic Function and Comparative Study of Some MRFs for Bayesian Image Restoration

    Get PDF
    The present work introduces an alternative method to deal with digital image restoration into a Bayesian framework, particularly, the use of a new half-quadratic function is proposed which performance is satisfactory compared with respect to some other functions in existing literature. The bayesian methodology is based on the prior knowledge of some information that allows an efficient modelling of the image acquisition process. The edge preservation of objects into the image while smoothing noise is necessary in an adequate model. Thus, we use a convexity criteria given by a semi-Huber function to obtain adequate weighting of the cost functions (half-quadratic) to be minimized. The principal objective when using Bayesian methods based on the Markov Random Fields (MRF) in the context of image processing is to eliminate those effects caused by the excessive smoothness on the reconstruction process of image which are rich in contours or edges. A comparison between the new introduced scheme and other three existing schemes, for the cases of noise filtering and image deblurring, is presented. This collection of implemented methods is inspired of course on the use of MRFs such as the semi-Huber, the generalized Gaussian, the Welch, and Tukey potential functions with granularity control. The obtained results showed a satisfactory performance and the effectiveness of the proposed estimator with respect to other three estimators

    Plantar pressure image fusion for comfort fusion in diabetes mellitus using an improved fuzzy hidden Markov model

    Get PDF
    Diabetes mellitus is a clinical syndrome caused by the interaction of genetic and environmental factors. The change of plantar pressure in diabetic patients is one of the important reasons for the occurrence of diabetic foot. The abnormal increase of plantar pressure is a predictor of the common occurrence of foot ulcers. The feature extraction of plantar pressure distribution will be beneficial to the design and manufacture of diabetic shoes that will be beneficial for early protection of Diabetes mellitus patients. In this research, texture-based features of the Angular Second Moment (ASM), Moment of Inertia (MI), Inverse Difference Monument (IDM), and Entropy (E) have been selected and fused by using the an up-down algorithm. The fused features are normalized to predict comfort plantar pressure imaging dataset using an improved Fuzzy Hidden Markov Model (FHMM). In FHMM, type-I fuzzy set is proposed and Fuzzy Baum-Welch algorithm is also applied to estimate the next features. The results are discussed, and by comparing with other back-forward algorithms and different fusion operations in FHMM. Improved HMMs with up-down fusion using type-I fuzzy definition performs high effectiveness in prediction comfort plantar pressure distribution in an image dataset with an accuracy of 82.2% and the research will be applied to the shoe-last personalized customization in the industry

    Supervised and unsupervised segmentation of textured images by efficient multi-level pattern classification

    Get PDF
    This thesis proposes new, efficient methodologies for supervised and unsupervised image segmentation based on texture information. For the supervised case, a technique for pixel classification based on a multi-level strategy that iteratively refines the resulting segmentation is proposed. This strategy utilizes pattern recognition methods based on prototypes (determined by clustering algorithms) and support vector machines. In order to obtain the best performance, an algorithm for automatic parameter selection and methods to reduce the computational cost associated with the segmentation process are also included. For the unsupervised case, the previous methodology is adapted by means of an initial pattern discovery stage, which allows transforming the original unsupervised problem into a supervised one. Several sets of experiments considering a wide variety of images are carried out in order to validate the developed techniques.Esta tesis propone metodologías nuevas y eficientes para segmentar imágenes a partir de información de textura en entornos supervisados y no supervisados. Para el caso supervisado, se propone una técnica basada en una estrategia de clasificación de píxeles multinivel que refina la segmentación resultante de forma iterativa. Dicha estrategia utiliza métodos de reconocimiento de patrones basados en prototipos (determinados mediante algoritmos de agrupamiento) y máquinas de vectores de soporte. Con el objetivo de obtener el mejor rendimiento, se incluyen además un algoritmo para selección automática de parámetros y métodos para reducir el coste computacional asociado al proceso de segmentación. Para el caso no supervisado, se propone una adaptación de la metodología anterior mediante una etapa inicial de descubrimiento de patrones que permite transformar el problema no supervisado en supervisado. Las técnicas desarrolladas en esta tesis se validan mediante diversos experimentos considerando una gran variedad de imágenes

    A New Multistage Medical Segmentation Method Based on Superpixel and Fuzzy Clustering

    Get PDF
    The medical image segmentation is the key approach of image processing for brain MRI images. However, due to the visual complex appearance of image structures and the imaging characteristic, it is still challenging to automatically segment brain MRI image. A new multi-stage segmentation method based on superpixel and fuzzy clustering (MSFCM) is proposed to achieve the good brain MRI segmentation results. The MSFCM utilizes the superpixels as the clustering objects instead of pixels, and it can increase the clustering granularity and overcome the influence of noise and bias effectively. In the first stage, the MRI image is parsed into several atomic areas, namely, superpixels, and a further parsing step is adopted for the areas with bigger gray variance over setting threshold. Subsequently, designed fuzzy clustering is carried out to the fuzzy membership of each superpixel, and an iterative broadcast method based on the Butterworth function is used to redefine their classifications. Finally, the segmented image is achieved by merging the superpixels which have the same classification label. The simulated brain database from BrainWeb site is used in the experiments, and the experimental results demonstrate that MSFCM method outperforms the traditional FCM algorithm in terms of segmentation accuracy and stability for MRI image

    The Impact of Different Image Thresholding based Mammogram Image Segmentation- A Review

    Get PDF
    Images are examined and discretized numerical capacities. The goal of computerized image processing is to enhance the nature of pictorial data and to encourage programmed machine elucidation. A computerized imaging framework ought to have fundamental segments for picture procurement, exceptional equipment for encouraging picture applications, and a tremendous measure of memory for capacity and info/yield gadgets. Picture segmentation is the field broadly scrutinized particularly in numerous restorative applications and still offers different difficulties for the specialists. Segmentation is a critical errand to recognize districts suspicious of tumor in computerized mammograms. Every last picture have distinctive sorts of edges and diverse levels of limits. In picture transforming, the most regularly utilized strategy as a part of extricating articles from a picture is "thresholding". Thresholding is a prevalent device for picture segmentation for its straightforwardness, particularly in the fields where ongoing handling is required
    corecore