670 research outputs found

    Subspace Representations and Learning for Visual Recognition

    Get PDF
    Pervasive and affordable sensor and storage technology enables the acquisition of an ever-rising amount of visual data. The ability to extract semantic information by interpreting, indexing and searching visual data is impacting domains such as surveillance, robotics, intelligence, human- computer interaction, navigation, healthcare, and several others. This further stimulates the investigation of automated extraction techniques that are more efficient, and robust against the many sources of noise affecting the already complex visual data, which is carrying the semantic information of interest. We address the problem by designing novel visual data representations, based on learning data subspace decompositions that are invariant against noise, while being informative for the task at hand. We use this guiding principle to tackle several visual recognition problems, including detection and recognition of human interactions from surveillance video, face recognition in unconstrained environments, and domain generalization for object recognition.;By interpreting visual data with a simple additive noise model, we consider the subspaces spanned by the model portion (model subspace) and the noise portion (variation subspace). We observe that decomposing the variation subspace against the model subspace gives rise to the so-called parity subspace. Decomposing the model subspace against the variation subspace instead gives rise to what we name invariant subspace. We extend the use of kernel techniques for the parity subspace. This enables modeling the highly non-linear temporal trajectories describing human behavior, and performing detection and recognition of human interactions. In addition, we introduce supervised low-rank matrix decomposition techniques for learning the invariant subspace for two other tasks. We learn invariant representations for face recognition from grossly corrupted images, and we learn object recognition classifiers that are invariant to the so-called domain bias.;Extensive experiments using the benchmark datasets publicly available for each of the three tasks, show that learning representations based on subspace decompositions invariant to the sources of noise lead to results comparable or better than the state-of-the-art

    A Comprehensive Literature Review on Convolutional Neural Networks

    Get PDF
    The fields of computer vision and image processing from their initial days have been dealing with the problems of visual recognition. Convolutional Neural Networks (CNNs) in machine learning are deep architectures built as feed-forward neural networks or perceptrons, which are inspired by the research done in the fields of visual analysis by the visual cortex of mammals like cats. This work gives a detailed analysis of CNNs for the computer vision tasks, natural language processing, fundamental sciences and engineering problems along with other miscellaneous tasks. The general CNN structure along with its mathematical intuition and working, a brief critical commentary on the advantages and disadvantages, which leads researchers to search for alternatives to CNN’s are also mentioned. The paper also serves as an appreciation of the brain-child of past researchers for the existence of such a fecund architecture for handling multidimensional data and approaches to improve their performance further

    Learning Representations for Face Recognition: A Review from Holistic to Deep Learning

    Get PDF
    For decades, researchers have investigated how to recognize facial images. This study reviews the development of different face recognition (FR) methods, namely, holistic learning, handcrafted local feature learning, shallow learning, and deep learning (DL). With the development of methods, the accuracy of recognizing faces in the labeled faces in the wild (LFW) database has been increased. The accuracy of holistic learning is 60%, that of handcrafted local feature learning increases to 70%, and that of shallow learning is 86%. Finally, DL achieves human-level performance (97% accuracy). This enhanced accuracy is caused by large datasets and graphics processing units (GPUs) with massively parallel processing capabilities. Furthermore, FR challenges and current research studies are discussed to understand future research directions. The results of this study show that presently the database of labeled faces in the wild has reached 99.85% accuracy

    Enhancing Face Recognition with Deep Learning Architectures: A Comprehensive Review

    Get PDF
    The progression of information discernment via facial identification and the emergence of innovative frameworks has exhibited remarkable strides in recent years. This phenomenon has been particularly pronounced within the realm of verifying individual credentials, a practice prominently harnessed by law enforcement agencies to advance the field of forensic science. A multitude of scholarly endeavors have been dedicated to the application of deep learning techniques within machine learning models. These endeavors aim to facilitate the extraction of distinctive features and subsequent classification, thereby elevating the precision of unique individual recognition. In the context of this scholarly inquiry, the focal point resides in the exploration of deep learning methodologies tailored for the realm of facial recognition and its subsequent matching processes. This exploration centers on the augmentation of accuracy through the meticulous process of training models with expansive datasets. Within the confines of this research paper, a comprehensive survey is conducted, encompassing an array of diverse strategies utilized in facial recognition. This survey, in turn, delves into the intricacies and challenges that underlie the intricate field of facial recognition within imagery analysis

    REPRESENTATION LEARNING FOR ACTION RECOGNITION

    Get PDF
    The objective of this research work is to develop discriminative representations for human actions. The motivation stems from the fact that there are many issues encountered while capturing actions in videos like intra-action variations (due to actors, viewpoints, and duration), inter-action similarity, background motion, and occlusion of actors. Hence, obtaining a representation which can address all the variations in the same action while maintaining discrimination with other actions is a challenging task. In literature, actions have been represented either using either low-level or high-level features. Low-level features describe the motion and appearance in small spatio-temporal volumes extracted from a video. Due to the limited space-time volume used for extracting low-level features, they are not able to account for viewpoint and actor variations or variable length actions. On the other hand, high-level features handle variations in actors, viewpoints, and duration but the resulting representation is often high-dimensional which introduces the curse of dimensionality. In this thesis, we propose new representations for describing actions by combining the advantages of both low-level and high-level features. Specifically, we investigate various linear and non-linear decomposition techniques to extract meaningful attributes in both high-level and low-level features. In the first approach, the sparsity of high-level feature descriptors is leveraged to build action-specific dictionaries. Each dictionary retains only the discriminative information for a particular action and hence reduces inter-action similarity. Then, a sparsity-based classification method is proposed to classify the low-rank representation of clips obtained using these dictionaries. We show that this representation based on dictionary learning improves the classification performance across actions. Also, a few of the actions consist of rapid body deformations that hinder the extraction of local features from body movements. Hence, we propose to use a dictionary which is trained on convolutional neural network (CNN) features of the human body in various poses to reliably identify actors from the background. Particularly, we demonstrate the efficacy of sparse representation in the identification of the human body under rapid and substantial deformation. In the first two approaches, sparsity-based representation is developed to improve discriminability using class-specific dictionaries that utilize action labels. However, developing an unsupervised representation of actions is more beneficial as it can be used to both recognize similar actions and localize actions. We propose to exploit inter-action similarity to train a universal attribute model (UAM) in order to learn action attributes (common and distinct) implicitly across all the actions. Using maximum aposteriori (MAP) adaptation, a high-dimensional super action-vector (SAV) for each clip is extracted. As this SAV contains redundant attributes of all other actions, we use factor analysis to extract a novel lowvi dimensional action-vector representation for each clip. Action-vectors are shown to suppress background motion and highlight actions of interest in both trimmed and untrimmed clips that contributes to action recognition without the help of any classifiers. It is observed during our experiments that action-vector cannot effectively discriminate between actions which are visually similar to each other. Hence, we subject action-vectors to supervised linear embedding using linear discriminant analysis (LDA) and probabilistic LDA (PLDA) to enforce discrimination. Particularly, we show that leveraging complimentary information across action-vectors using different local features followed by discriminative embedding provides the best classification performance. Further, we explore non-linear embedding of action-vectors using Siamese networks especially for fine-grained action recognition. A visualization of the hidden layer output in Siamese networks shows its ability to effectively separate visually similar actions. This leads to better classification performance than linear embedding on fine-grained action recognition. All of the above approaches are presented on large unconstrained datasets with hundreds of examples per action. However, actions in surveillance videos like snatch thefts are difficult to model because of the diverse variety of scenarios in which they occur and very few labeled examples. Hence, we propose to utilize the universal attribute model (UAM) trained on large action datasets to represent such actions. Specifically, we show that there are similarities between certain actions in the large datasets with snatch thefts which help in extracting a representation for snatch thefts using the attributes from the UAM. This representation is shown to be effective in distinguishing snatch thefts from regular actions with high accuracy.In summary, this thesis proposes both supervised and unsupervised approaches for representing actions which provide better discrimination than existing representations. The first approach presents a dictionary learning based sparse representation for effective discrimination of actions. Also, we propose a sparse representation for the human body based on dictionaries in order to recognize actions with rapid body deformations. In the next approach, a low-dimensional representation called action-vector for unsupervised action recognition is presented. Further, linear and non-linear embedding of action-vectors is proposed for addressing inter-action similarity and fine-grained action recognition, respectively. Finally, we propose a representation for locating snatch thefts among thousands of regular interactions in surveillance videos

    Automatic Kinship Verification in Unconstrained Faces using Deep Learning

    Get PDF
    Kinship verification has a number of applications such as organizing large collections of images and recognizing resemblances among humans. Identifying kinship relations has also garnered interest due to several potential applications in security and surveillance and organizing and tagging the enormous number of videos being uploaded on the Internet. This dissertation has a five-fold contribution where first, a study is conducted to gain insight into the kinship verification process used by humans. Besides this, two separate deep learning based methods are proposed to solve kinship verification in images and videos. Other contributions of this research include interlinking face verification with kinship verification and creation of two kinship databases to facilitate research in this field. WVU Kinship Database is created which consists of multiple images per subject to facilitate kinship verification research. Next, kinship video (KIVI) database of more than 500 individuals with variations due to illumination, pose, occlusion, ethnicity, and expression is collected for this research. It comprises a total of 355 true kin video pairs with over 250,000 still frames. In this dissertation, a human study is conducted to understand the capabilities of human mind and to identify the discriminatory areas of a face that facilitate kinship-cues. The visual stimuli presented to the participants determines their ability to recognize kin relationship using the whole face as well as specific facial regions. The effect of participant gender, age, and kin-relation pair of the stimulus is analyzed using quantitative measures such as accuracy, discriminability index d′, and perceptual information entropy. Next, utilizing the information obtained from the human study, a hierarchical Kinship Verification via Representation Learning (KVRL) framework is utilized to learn the representation of different face regions in an unsupervised manner. We propose a novel approach for feature representation termed as filtered contractive deep belief networks (fcDBN). The proposed feature representation encodes relational information present in images using filters and contractive regularization penalty. A compact representation of facial images of kin is extracted as the output from the learned model and a multi-layer neural network is utilized to verify the kin accurately. The results show that the proposed deep learning framework (KVRL-fcDBN) yields state-of-the-art kinship verification accuracy on the WVU Kinship database and on four existing benchmark datasets. Additionally, we propose a new deep learning framework for kinship verification in unconstrained videos using a novel Supervised Mixed Norm regularization Autoencoder (SMNAE). This new autoencoder formulation introduces class-specific sparsity in the weight matrix. The proposed three-stage SMNAE based kinship verification framework utilizes the learned spatio-temporal representation in the video frames for verifying kinship in a pair of videos. The effectiveness of the proposed framework is demonstrated on the KIVI database and six existing kinship databases. On the KIVI database, SMNAE yields videobased kinship verification accuracy of 83.18% which is at least 3.2% better than existing algorithms. The algorithm is also evaluated on six publicly available kinship databases and compared with best reported results. It is observed that the proposed SMNAE consistently yields best results on all the databases. Finally, we end by discussing the connections between face verification and kinship verification research. We explore the area of self-kinship which is age-invariant face recognition. Further, kinship information is used as a soft biometric modality to boost the performance of face verification via product of likelihood ratio and support vector machine based approaches. Using the proposed KVRL-fcDBN framework, an improvement of over 20% is observed in the performance of face verification. By addressing several problems of limited samples per kinship dataset, introducing real-world variations in unconstrained databases and designing two deep learning frameworks, this dissertation improves the understanding of kinship verification across humans and the performance of automated systems. The algorithms proposed in this research have been shown to outperform existing algorithms across six different kinship databases and has till date the best reported results in this field

    Real-world Human Re-identification: Attributes and Beyond.

    Get PDF
    PhDSurveillance systems capable of performing a diverse range of tasks that support human intelligence and analytical efforts are becoming widespread and crucial due to increasing threats upon national infrastructure and evolving business and governmental analytical requirements. Surveillance data can be critical for crime-prevention, forensic analysis, and counter-terrorism activities in both civilian and governmental agencies alike. However, visual surveillance data must currently be parsed by trained human operators and therefore any utility is offset by the inherent training and staffing costs as a result. The automated analysis of surveillance video is therefore of great scientific interest. One of the open problems within this area is that of reliably matching humans between disjoint surveillance camera views, termed re-identification. Automated re-identification facilitates human operational efficiency in the grouping of disparate and fragmented people observations through space and time into individual personal identities, a pre-requisite for higher-level surveillance tasks. However, due to the complex nature of realworld scenes and the highly variable nature of human appearance, reliably re-identifying people is non-trivial. Most re-identification approaches developed so far rely on low-level visual feature matching approaches that aim to match human detections against a known gallery of potential matches. However, for many applications an initial detection of a human may be unavailable or a low-level feature representation may not be sufficiently invariant to photometric or geometric variability inherent between camera views. This thesis begins by proposing a “mid-level” human-semantic representation that exploits expert human knowledge of surveillance task execution to the task of re-identifying people in order to compute an attribute-based description of a human. It further shows how this attribute-based description is synergistic with low-level data-derived features to enhance re-identification accuracy and subsequently gain further performance benefits by employing a discriminatively learned distance metric. Finally, a novel “zero-shot” scenario is proposed in which a visual probe is unavailable but re-identification is still possible via a manually provided semantic attribute description. The approach is extensively evaluated using several public benchmark datasets. One challenge in constructing an attribute-based and human-semantic representation is the requirement for extensive annotation. Mitigating this annotation cost in order to present a realistic and scalable re-identification system, is motivation for the second technical area of this thesis, where transfer-learning and data-mining are investigatedin two different approaches. Discriminative methods trade annotation cost for enhanced performance. Because discriminative person re-identification models operate between two camera views, annotation cost therefore scales quadratically on the number of cameras in the entire network. For practical re-identification, this 4 is an unreasonable expectation and prohibitively expensive. By leveraging flexible multi-source transfer of re-identification models, part of this cost may be alleviated. Specifically, it is possible to leverage prior re-identification models learned for a set of source-view pairs (domains), and flexibly combine those to obtain good re-identification performance for a given target-view pair with greatly reduced annotation requirements. The volume of exhaustive annotation effort required for attribute-driven re-identification scales linearly on the number of cameras and attributes. Real-world operation of an attributeenabled, distributed camera network would also require prohibitive quantities of annotation effort by human experts. This effort is completely avoided by taking a data-driven approach to attribute computation, by learning an effective associated representation by crawling large volumes of Internet data. By training on a larger and more diverse array of examples, this representation is more view-invariant and generalisable than attributes trained on conventional scales. These automatically discovered attributes are shown to provide a valuable representation that significantly improves re-identification performance. Moreover, a method to map them onto existing expert-annotated-ontologies is contributed. In the final contribution of this thesis, the underlying assumptions about visual surveillance equipment and re-identification are challenged and the thesis motivates a novel research area using dynamic, mobile platforms. Such platforms violate the common assumption shared by most previous research, namely that surveillance devices are always stationary, relative to the observed scene. The most important new challenge discovered in this exciting area is that the unconstrained video is too challenging for traditional approaches to applying discriminative methods that rely on the explicit modelling of appearance translations when modelling view-pairs, or even a single view. A new dataset was collected by a remote-operated vehicle using control software developed to simulate a fully-autonomous re-identification unmanned aerial vehicle programmed to fly in proximity with humans until images of sufficient quality for re-identification are obtained. Variations of the standard re-identification model are investigated in an enhanced re-identification paradigm, and new challenges with this distinct form of re-identification are elucidated. Finally, conventional wisdom regarding re-identification in light of these observations is re-examined

    Learning object behaviour models

    Get PDF
    The human visual system is capable of interpreting a remarkable variety of often subtle, learnt, characteristic behaviours. For instance we can determine the gender of a distant walking figure from their gait, interpret a facial expression as that of surprise, or identify suspicious behaviour in the movements of an individual within a car-park. Machine vision systems wishing to exploit such behavioural knowledge have been limited by the inaccuracies inherent in hand-crafted models and the absence of a unified framework for the perception of powerful behaviour models. The research described in this thesis attempts to address these limitations, using a statistical modelling approach to provide a framework in which detailed behavioural knowledge is acquired from the observation of long image sequences. The core of the behaviour modelling framework is an optimised sample-set representation of the probability density in a behaviour space defined by a novel temporal pattern formation strategy. This representation of behaviour is both concise and accurate and facilitates the recognition of actions or events and the assessment of behaviour typicality. The inclusion of generative capabilities is achieved via the addition of a learnt stochastic process model, thus facilitating the generation of predictions and realistic sample behaviours. Experimental results demonstrate the acquisition of behaviour models and suggest a variety of possible applications, including automated visual surveillance, object tracking, gesture recognition, and the generation of realistic object behaviours within animations, virtual worlds, and computer generated film sequences. The utility of the behaviour modelling framework is further extended through the modelling of object interaction. Two separate approaches are presented, and a technique is developed which, using learnt models of joint behaviour together with a stochastic tracking algorithm, can be used to equip a virtual object with the ability to interact in a natural way. Experimental results demonstrate the simulation of a plausible virtual partner during interaction between a user and the machine
    corecore