141 research outputs found

    Shedding light on social learning

    Full text link
    Culture involves the origination and transmission of ideas, but the conditions in which culture can emerge and evolve are unclear. We constructed and studied a highly simplified neural-network model of these processes. In this model ideas originate by individual learning from the environment and are transmitted by communication between individuals. Individuals (or "agents") comprise a single neuron which receives structured data from the environment via plastic synaptic connections. The data are generated in the simplest possible way: linear mixing of independently fluctuating sources and the goal of learning is to unmix the data. To make this problem tractable we assume that at least one of the sources fluctuates in a nonGaussian manner. Linear mixing creates structure in the data, and agents attempt to learn (from the data and possibly from other individuals) synaptic weights that will unmix, i.e., to "understand" the agent's world. For a variety of reasons even this goal can be difficult for a single agent to achieve; we studied one particular type of difficulty (created by imperfection in synaptic plasticity), though our conclusions should carry over to many other types of difficulty. We previously studied whether a small population of communicating agents, learning from each other, could more easily learn unmixing coefficients than isolated individuals, learning only from their environment. We found, unsurprisingly, that if agents learn indiscriminately from any other agent (whether or not they have learned good solutions), communication does not enhance understanding. Here we extend the model slightly, by allowing successful learners to be more effective teachers, and find that now a population of agents can learn more effectively than isolated individuals. We suggest that a key factor in the onset of culture might be the development of selective learning.Comment: 11 pages 8 figure

    A Unifying review of linear gaussian models

    Get PDF
    Factor analysis, principal component analysis, mixtures of gaussian clusters, vector quantization, Kalman filter models, and hidden Markov models can all be unified as variations of unsupervised learning under a single basic generative model. This is achieved by collecting together disparate observations and derivations made by many previous authors and introducing a new way of linking discrete and continuous state models using a simple nonlinearity. Through the use of other nonlinearities, we show how independent component analysis is also a variation of the same basic generative model.We show that factor analysis and mixtures of gaussians can be implemented in autoencoder neural networks and learned using squared error plus the same regularization term. We introduce a new model for static data, known as sensible principal component analysis, as well as a novel concept of spatially adaptive observation noise. We also review some of the literature involving global and local mixtures of the basic models and provide pseudocode for inference and learning for all the basic models

    Investigating Machine Learning Techniques for Gesture Recognition with Low-Cost Capacitive Sensing Arrays

    Get PDF
    Machine learning has proven to be an effective tool for forming models to make predictions based on sample data. Supervised learning, a subset of machine learning, can be used to map input data to output labels based on pre-existing paired data. Datasets for machine learning can be created from many different sources and vary in complexity, with popular datasets including the MNIST handwritten dataset and CIFAR10 image dataset. The focus of this thesis is to test and validate multiple machine learning models for accurately classifying gestures performed on a low-cost capacitive sensing array. Multiple neural networks are trained using gesture datasets obtained from the capacitance board. In this paper, I train and compare different machine learning models on recognizing gesture datasets. Learning hyperparameters are also adjusted for results. Two datasets are used for the training: one containing simple gestures and another containing more complicated gestures. Accuracy and loss for the models are calculated and compared to determine which models excel at recognizing performed gestures

    Further advances on Bayesian Ying-Yang harmony learning

    Get PDF

    A Constrained EM Algorithm for Independent Component Analysis

    Get PDF
    We introduce a novel way of performing independent component analysis using a constrained version of the expectation-maximization (EM) algorithm. The source distributions are modeled as D one-dimensional mixtures of gaussians. The observed data are modeled as linear mixtures of the sources with additive, isotropic noise. This generative model is fit to the data using constrained EM. The simpler “soft-switching” approach is introduced, which uses only one parameter to decide on the sub- or supergaussian nature of the sources. We explain how our approach relates to independent factor analysis

    Hyperspectral colon tissue cell classification

    Get PDF
    A novel algorithm to discriminate between normal and malignant tissue cells of the human colon is presented. The microscopic level images of human colon tissue cells were acquired using hyperspectral imaging technology at contiguous wavelength intervals of visible light. While hyperspectral imagery data provides a wealth of information, its large size normally means high computational processing complexity. Several methods exist to avoid the so-called curse of dimensionality and hence reduce the computational complexity. In this study, we experimented with Principal Component Analysis (PCA) and two modifications of Independent Component Analysis (ICA). In the first stage of the algorithm, the extracted components are used to separate four constituent parts of the colon tissue: nuclei, cytoplasm, lamina propria, and lumen. The segmentation is performed in an unsupervised fashion using the nearest centroid clustering algorithm. The segmented image is further used, in the second stage of the classification algorithm, to exploit the spatial relationship between the labeled constituent parts. Experimental results using supervised Support Vector Machines (SVM) classification based on multiscale morphological features reveal the discrimination between normal and malignant tissue cells with a reasonable degree of accuracy
    corecore