956 research outputs found

    Unsupervised learning for cross-domain medical image synthesis using deformation invariant cycle consistency networks

    Full text link
    Recently, the cycle-consistent generative adversarial networks (CycleGAN) has been widely used for synthesis of multi-domain medical images. The domain-specific nonlinear deformations captured by CycleGAN make the synthesized images difficult to be used for some applications, for example, generating pseudo-CT for PET-MR attenuation correction. This paper presents a deformation-invariant CycleGAN (DicycleGAN) method using deformable convolutional layers and new cycle-consistency losses. Its robustness dealing with data that suffer from domain-specific nonlinear deformations has been evaluated through comparison experiments performed on a multi-sequence brain MR dataset and a multi-modality abdominal dataset. Our method has displayed its ability to generate synthesized data that is aligned with the source while maintaining a proper quality of signal compared to CycleGAN-generated data. The proposed model also obtained comparable performance with CycleGAN when data from the source and target domains are alignable through simple affine transformations

    Unsupervised image registration towards enhancing performance and explainability in cardiac and brain image analysis

    Get PDF
    Magnetic Resonance Imaging (MRI) typically recruits multiple sequences (defined here as “modalities”). As each modality is designed to offer different anatomical and functional clinical information, there are evident disparities in the imaging content across modalities. Inter- and intra-modality affine and non-rigid image registration is an essential medical image analysis process in clinical imaging, as for example before imaging biomarkers need to be derived and clinically evaluated across different MRI modalities, time phases and slices. Although commonly needed in real clinical scenarios, affine and non-rigid image registration is not extensively investigated using a single unsupervised model architecture. In our work, we present an unsupervised deep learning registration methodology that can accurately model affine and non-rigid transformations, simultaneously. Moreover, inverse-consistency is a fundamental inter-modality registration property that is not considered in deep learning registration algorithms. To address inverse consistency, our methodology performs bi-directional cross-modality image synthesis to learn modality-invariant latent representations, and involves two factorised transformation networks (one per each encoder-decoder channel) and an inverse-consistency loss to learn topology-preserving anatomical transformations. Overall, our model (named “FIRE”) shows improved performances against the reference standard baseline method (i.e., Symmetric Normalization implemented using the ANTs toolbox) on multi-modality brain 2D and 3D MRI and intra-modality cardiac 4D MRI data experiments. We focus on explaining model-data components to enhance model explainability in medical image registration. On computational time experiments, we show that the FIRE model performs on a memory-saving mode, as it can inherently learn topology-preserving image registration directly in the training phase. We therefore demonstrate an efficient and versatile registration technique that can have merit in multi-modal image registrations in the clinical setting

    Synth-by-Reg (SbR): Contrastive Learning for Synthesis-Based Registration of Paired Images

    Get PDF
    Nonlinear inter-modality registration is often challenging due to the lack of objective functions that are good proxies for alignment. Here we propose a synthesis-by-registration method to convert this problem into an easier intra-modality task. We introduce a registration loss for weakly supervised image translation between domains that does not require perfectly aligned training data. This loss capitalises on a registration U-Net with frozen weights, to drive a synthesis CNN towards the desired translation. We complement this loss with a structure preserving constraint based on contrastive learning, which prevents blurring and content shifts due to overfitting. We apply this method to the registration of histological sections to MRI slices, a key step in 3D histology reconstruction. Results on two public datasets show improvements over registration based on mutual information (13% reduction in landmark error) and synthesis-based algorithms such as CycleGAN (11% reduction), and are comparable to registration with label supervision. Code and data are publicly available at https://github.com/acasamitjana/SynthByReg

    Deformation equivariant cross-modality image synthesis with paired non-aligned training data

    Full text link
    Cross-modality image synthesis is an active research topic with multiple medical clinically relevant applications. Recently, methods allowing training with paired but misaligned data have started to emerge. However, no robust and well-performing methods applicable to a wide range of real world data sets exist. In this work, we propose a generic solution to the problem of cross-modality image synthesis with paired but non-aligned data by introducing new deformation equivariance encouraging loss functions. The method consists of joint training of an image synthesis network together with separate registration networks and allows adversarial training conditioned on the input even with misaligned data. The work lowers the bar for new clinical applications by allowing effortless training of cross-modality image synthesis networks for more difficult data sets
    corecore