52 research outputs found

    Essays on Machine Learning in Risk Management, Option Pricing, and Insurance Economics

    Get PDF
    Dealing with uncertainty is at the heart of financial risk management and asset pricing. This cumulative dissertation consists of four independent research papers that study various aspects of uncertainty, from estimation and model risk over the volatility risk premium to the measurement of unobservable variables. In the first paper, a non-parametric estimator of conditional quantiles is proposed that builds on methods from the machine learning literature. The so-called leveraging estimator is discussed in detail and analyzed in an extensive simulation study. Subsequently, the estimator is used to quantify the estimation risk of Value-at-Risk and Expected Shortfall models. The results suggest that there are significant differences in the estimation risk of various GARCH-type models while in general estimation risk for the Expected Shortfall is higher than for the Value-at-Risk. In the second paper, the leveraging estimator is applied to realized and implied volatility estimates of US stock options to empirically test if the volatility risk premium is priced in the cross-section of option returns. A trading strategy that is long (short) in a portfolio with low (high) implied volatility conditional on the realized volatility yields average monthly returns that are economically and statistically significant. The third paper investigates the model risk of multivariate Value-at-Risk and Expected Shortfall models in a comprehensive empirical study on copula GARCH models. The paper finds that model risk is economically significant, especially high during periods of financial turmoil, and mainly due to the choice of the copula. In the fourth paper, the relation between digitalization and the market value of US insurers is analyzed. Therefore, a text-based measure of digitalization building on the Latent Dirichlet Allocation is proposed. It is shown that a rise in digitalization efforts is associated with an increase in market valuations.:1 Introduction 1.1 Motivation 1.2 Conditional quantile estimation via leveraging optimal quantization 1.3 Cross-section of option returns and the volatility risk premium 1.4 Marginals versus copulas: Which account for more model risk in multivariate risk forecasting? 1.5 Estimating the relation between digitalization and the market value of insurers 2 Conditional Quantile Estimation via Leveraging Optimal Quantization 2.1 Introduction 2.2 Optimal quantization 2.3 Conditional quantiles through leveraging optimal quantization 2.4 The hyperparameters N, λ, and γ 2.5 Simulation study 2.6 Empirical application 2.7 Conclusion 3 Cross-Section of Option Returns and the Volatility Risk Premium 3.1 Introduction 3.2 Capturing the volatility risk premium 3.3 Empirical study 3.4 Robustness checks 3.5 Conclusion 4 Marginals Versus Copulas: Which Account for More Model Risk in Multivariate Risk Forecasting? 4.1 Introduction 4.2 Market risk models and model risk 4.3 Data 4.4 Analysis of model risk 4.5 Model risk for models in the model confidence set 4.6 Model risk and backtesting 4.7 Conclusion 5 Estimating the Relation Between Digitalization and the Market Value of Insurers 5.1 Introduction 5.2 Measuring digitalization using LDA 5.3 Financial data & empirical strategy 5.4 Estimation results 5.5 Conclusio

    Advances in deep learning with limited supervision and computational resources

    Full text link
    Les réseaux de neurones profonds sont la pierre angulaire des systèmes à la fine pointe de la technologie pour une vaste gamme de tâches, comme la reconnaissance d'objets, la modélisation du langage et la traduction automatique. Mis à part le progrès important établi dans les architectures et les procédures de formation des réseaux de neurones profonds, deux facteurs ont été la clé du succès remarquable de l'apprentissage profond : la disponibilité de grandes quantités de données étiquetées et la puissance de calcul massive. Cette thèse par articles apporte plusieurs contributions à l'avancement de l'apprentissage profond, en particulier dans les problèmes avec très peu ou pas de données étiquetées, ou avec des ressources informatiques limitées. Le premier article aborde la question de la rareté des données dans les systèmes de recommandation, en apprenant les représentations distribuées des produits à partir des commentaires d'évaluation de produits en langage naturel. Plus précisément, nous proposons un cadre d'apprentissage multitâches dans lequel nous utilisons des méthodes basées sur les réseaux de neurones pour apprendre les représentations de produits à partir de textes de critiques de produits et de données d'évaluation. Nous démontrons que la méthode proposée peut améliorer la généralisation dans les systèmes de recommandation et atteindre une performance de pointe sur l'ensemble de données Amazon Reviews. Le deuxième article s'attaque aux défis computationnels qui existent dans l'entraînement des réseaux de neurones profonds à grande échelle. Nous proposons une nouvelle architecture de réseaux de neurones conditionnels permettant d'attribuer la capacité du réseau de façon adaptative, et donc des calculs, dans les différentes régions des entrées. Nous démontrons l'efficacité de notre modèle sur les tâches de reconnaissance visuelle où les objets d'intérêt sont localisés à la couche d'entrée, tout en maintenant une surcharge de calcul beaucoup plus faible que les architectures standards des réseaux de neurones. Le troisième article contribue au domaine de l'apprentissage non supervisé, avec l'aide du paradigme des réseaux antagoniste génératifs. Nous introduisons un cadre fléxible pour l'entraînement des réseaux antagonistes génératifs, qui non seulement assure que le générateur estime la véritable distribution des données, mais permet également au discriminateur de conserver l'information sur la densité des données à l'optimum global. Nous validons notre cadre empiriquement en montrant que le discriminateur est capable de récupérer l'énergie de la distribution des données et d'obtenir une qualité d'échantillons à la fine pointe de la technologie. Enfin, dans le quatrième article, nous nous attaquons au problème de l'apprentissage non supervisé à travers différents domaines. Nous proposons un modèle qui permet d'apprendre des transformations plusieurs à plusieurs à travers deux domaines, et ce, à partir des données non appariées. Nous validons notre approche sur plusieurs ensembles de données se rapportant à l'imagerie, et nous montrons que notre méthode peut être appliquée efficacement dans des situations d'apprentissage semi-supervisé.Deep neural networks are the cornerstone of state-of-the-art systems for a wide range of tasks, including object recognition, language modelling and machine translation. In the last decade, research in the field of deep learning has led to numerous key advances in designing novel architectures and training algorithms for neural networks. However, most success stories in deep learning heavily relied on two main factors: the availability of large amounts of labelled data and massive computational resources. This thesis by articles makes several contributions to advancing deep learning, specifically in problems with limited or no labelled data, or with constrained computational resources. The first article addresses sparsity of labelled data that emerges in the application field of recommender systems. We propose a multi-task learning framework that leverages natural language reviews in improving recommendation. Specifically, we apply neural-network-based methods for learning representations of products from review text, while learning from rating data. We demonstrate that the proposed method can achieve state-of-the-art performance on the Amazon Reviews dataset. The second article tackles computational challenges in training large-scale deep neural networks. We propose a conditional computation network architecture which can adaptively assign its capacity, and hence computations, across different regions of the input. We demonstrate the effectiveness of our model on visual recognition tasks where objects are spatially localized within the input, while maintaining much lower computational overhead than standard network architectures. The third article contributes to the domain of unsupervised learning with the generative adversarial networks paradigm. We introduce a flexible adversarial training framework, in which not only the generator converges to the true data distribution, but also the discriminator recovers the relative density of the data at the optimum. We validate our framework empirically by showing that the discriminator is able to accurately estimate the true energy of data while obtaining state-of-the-art quality of samples. Finally, in the fourth article, we address the problem of unsupervised domain translation. We propose a model which can learn flexible, many-to-many mappings across domains from unpaired data. We validate our approach on several image datasets, and we show that it can be effectively applied in semi-supervised learning settings

    Non-parametric Bayesian models for structured output prediction

    Get PDF
    Structured output prediction is a machine learning tasks in which an input object is not just assigned a single class, as in classification, but multiple, interdependent labels. This means that the presence or value of a given label affects the other labels, for instance in text labelling problems, where output labels are applied to each word, and their interdependencies must be modelled. Non-parametric Bayesian (NPB) techniques are probabilistic modelling techniques which have the interesting property of allowing model capacity to grow, in a controllable way, with data complexity, while maintaining the advantages of Bayesian modelling. In this thesis, we develop NPB algorithms to solve structured output problems. We first study a map-reduce implementation of a stochastic inference method designed for the infinite hidden Markov model, applied to a computational linguistics task, part-of-speech tagging. We show that mainstream map-reduce frameworks do not easily support highly iterative algorithms. The main contribution of this thesis consists in a conceptually novel discriminative model, GPstruct. It is motivated by labelling tasks, and combines attractive properties of conditional random fields (CRF), structured support vector machines, and Gaussian process (GP) classifiers. In probabilistic terms, GPstruct combines a CRF likelihood with a GP prior on factors; it can also be described as a Bayesian kernelized CRF. To train this model, we develop a Markov chain Monte Carlo algorithm based on elliptical slice sampling and investigate its properties. We then validate it on real data experiments, and explore two topologies: sequence output with text labelling tasks, and grid output with semantic segmentation of images. The latter case poses scalability issues, which are addressed using likelihood approximations and an ensemble method which allows distributed inference and prediction. The experimental validation demonstrates: (a) the model is flexible and its constituent parts are modular and easy to engineer; (b) predictive performance and, most crucially, the probabilistic calibration of predictions are better than or equal to that of competitor models, and (c) model hyperparameters can be learnt from data
    corecore