7,610 research outputs found

    Self-supervised Learning of Event-guided Video Frame Interpolation for Rolling Shutter Frames

    Full text link
    This paper makes the first attempt to tackle the challenging task of recovering arbitrary frame rate latent global shutter (GS) frames from two consecutive rolling shutter (RS) frames, guided by the novel event camera data. Although events possess high temporal resolution, beneficial for video frame interpolation (VFI), a hurdle in tackling this task is the lack of paired GS frames. Another challenge is that RS frames are susceptible to distortion when capturing moving objects. To this end, we propose a novel self-supervised framework that leverages events to guide RS frame correction and VFI in a unified framework. Our key idea is to estimate the displacement field (DF) non-linear dense 3D spatiotemporal information of all pixels during the exposure time, allowing for the reciprocal reconstruction between RS and GS frames as well as arbitrary frame rate VFI. Specifically, the displacement field estimation (DFE) module is proposed to estimate the spatiotemporal motion from events to correct the RS distortion and interpolate the GS frames in one step. We then combine the input RS frames and DF to learn a mapping for RS-to-GS frame interpolation. However, as the mapping is highly under-constrained, we couple it with an inverse mapping (i.e., GS-to-RS) and RS frame warping (i.e., RS-to-RS) for self-supervision. As there is a lack of labeled datasets for evaluation, we generate two synthetic datasets and collect a real-world dataset to train and test our method. Experimental results show that our method yields comparable or better performance with prior supervised methods.Comment: This paper has been submitted for review in March 202

    Big data and the SP theory of intelligence

    Get PDF
    This article is about how the "SP theory of intelligence" and its realisation in the "SP machine" may, with advantage, be applied to the management and analysis of big data. The SP system -- introduced in the article and fully described elsewhere -- may help to overcome the problem of variety in big data: it has potential as "a universal framework for the representation and processing of diverse kinds of knowledge" (UFK), helping to reduce the diversity of formalisms and formats for knowledge and the different ways in which they are processed. It has strengths in the unsupervised learning or discovery of structure in data, in pattern recognition, in the parsing and production of natural language, in several kinds of reasoning, and more. It lends itself to the analysis of streaming data, helping to overcome the problem of velocity in big data. Central in the workings of the system is lossless compression of information: making big data smaller and reducing problems of storage and management. There is potential for substantial economies in the transmission of data, for big cuts in the use of energy in computing, for faster processing, and for smaller and lighter computers. The system provides a handle on the problem of veracity in big data, with potential to assist in the management of errors and uncertainties in data. It lends itself to the visualisation of knowledge structures and inferential processes. A high-parallel, open-source version of the SP machine would provide a means for researchers everywhere to explore what can be done with the system and to create new versions of it.Comment: Accepted for publication in IEEE Acces

    Iterative Prompt Learning for Unsupervised Backlit Image Enhancement

    Full text link
    We propose a novel unsupervised backlit image enhancement method, abbreviated as CLIP-LIT, by exploring the potential of Contrastive Language-Image Pre-Training (CLIP) for pixel-level image enhancement. We show that the open-world CLIP prior not only aids in distinguishing between backlit and well-lit images, but also in perceiving heterogeneous regions with different luminance, facilitating the optimization of the enhancement network. Unlike high-level and image manipulation tasks, directly applying CLIP to enhancement tasks is non-trivial, owing to the difficulty in finding accurate prompts. To solve this issue, we devise a prompt learning framework that first learns an initial prompt pair by constraining the text-image similarity between the prompt (negative/positive sample) and the corresponding image (backlit image/well-lit image) in the CLIP latent space. Then, we train the enhancement network based on the text-image similarity between the enhanced result and the initial prompt pair. To further improve the accuracy of the initial prompt pair, we iteratively fine-tune the prompt learning framework to reduce the distribution gaps between the backlit images, enhanced results, and well-lit images via rank learning, boosting the enhancement performance. Our method alternates between updating the prompt learning framework and enhancement network until visually pleasing results are achieved. Extensive experiments demonstrate that our method outperforms state-of-the-art methods in terms of visual quality and generalization ability, without requiring any paired data.Comment: Accepted to ICCV 2023 as Oral. Project page: https://zhexinliang.github.io/CLIP_LIT_page
    • …
    corecore