4,183 research outputs found

    Unsupervised ensemble minority clustering

    Get PDF
    Cluster a alysis lies at the core of most unsupervised learning tasks. However, the majority of clustering algorithms depend on the all-in assumption, in which all objects belong to some cluster, and perform poorly on minority clustering tasks, in which a small fraction of signal data stands against a majority of noise. The approaches proposed so far for minority clustering are supervised: they require the number and distribution of the foreground and background clusters. In supervised learning and all-in clustering, combination methods have been successfully applied to obtain distribution-free learners, even from the output of weak individual algorithms. In this report, we present a novel ensemble minority clustering algorithm, Ewocs, suitable for weak clustering combination, and provide a theoretical proof of its properties under a loose set of constraints. The validity of the assumptions used in the proof is empirically assessed using a collection of synthetic datasets.Preprin

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    A systematic review of data quality issues in knowledge discovery tasks

    Get PDF
    Hay un gran crecimiento en el volumen de datos porque las organizaciones capturan permanentemente la cantidad colectiva de datos para lograr un mejor proceso de toma de decisiones. El desafío mas fundamental es la exploración de los grandes volúmenes de datos y la extracción de conocimiento útil para futuras acciones por medio de tareas para el descubrimiento del conocimiento; sin embargo, muchos datos presentan mala calidad. Presentamos una revisión sistemática de los asuntos de calidad de datos en las áreas del descubrimiento de conocimiento y un estudio de caso aplicado a la enfermedad agrícola conocida como la roya del café.Large volume of data is growing because the organizations are continuously capturing the collective amount of data for better decision-making process. The most fundamental challenge is to explore the large volumes of data and extract useful knowledge for future actions through knowledge discovery tasks, nevertheless many data has poor quality. We presented a systematic review of the data quality issues in knowledge discovery tasks and a case study applied to agricultural disease named coffee rust

    Mean-Field Theory of Meta-Learning

    Full text link
    We discuss here the mean-field theory for a cellular automata model of meta-learning. The meta-learning is the process of combining outcomes of individual learning procedures in order to determine the final decision with higher accuracy than any single learning method. Our method is constructed from an ensemble of interacting, learning agents, that acquire and process incoming information using various types, or different versions of machine learning algorithms. The abstract learning space, where all agents are located, is constructed here using a fully connected model that couples all agents with random strength values. The cellular automata network simulates the higher level integration of information acquired from the independent learning trials. The final classification of incoming input data is therefore defined as the stationary state of the meta-learning system using simple majority rule, yet the minority clusters that share opposite classification outcome can be observed in the system. Therefore, the probability of selecting proper class for a given input data, can be estimated even without the prior knowledge of its affiliation. The fuzzy logic can be easily introduced into the system, even if learning agents are build from simple binary classification machine learning algorithms by calculating the percentage of agreeing agents.Comment: 23 page

    Oversampling for Imbalanced Learning Based on K-Means and SMOTE

    Full text link
    Learning from class-imbalanced data continues to be a common and challenging problem in supervised learning as standard classification algorithms are designed to handle balanced class distributions. While different strategies exist to tackle this problem, methods which generate artificial data to achieve a balanced class distribution are more versatile than modifications to the classification algorithm. Such techniques, called oversamplers, modify the training data, allowing any classifier to be used with class-imbalanced datasets. Many algorithms have been proposed for this task, but most are complex and tend to generate unnecessary noise. This work presents a simple and effective oversampling method based on k-means clustering and SMOTE oversampling, which avoids the generation of noise and effectively overcomes imbalances between and within classes. Empirical results of extensive experiments with 71 datasets show that training data oversampled with the proposed method improves classification results. Moreover, k-means SMOTE consistently outperforms other popular oversampling methods. An implementation is made available in the python programming language.Comment: 19 pages, 8 figure

    Unsupervised learning of relation detection patterns

    Get PDF
    L'extracció d'informació és l'àrea del processament de llenguatge natural l'objectiu de la qual és l'obtenir dades estructurades a partir de la informació rellevant continguda en fragments textuals. L'extracció d'informació requereix una quantitat considerable de coneixement lingüístic. La especificitat d'aquest coneixement suposa un inconvenient de cara a la portabilitat dels sistemes, ja que un canvi d'idioma, domini o estil té un cost en termes d'esforç humà. Durant dècades, s'han aplicat tècniques d'aprenentatge automàtic per tal de superar aquest coll d'ampolla de portabilitat, reduint progressivament la supervisió humana involucrada. Tanmateix, a mida que augmenta la disponibilitat de grans col·leccions de documents, esdevenen necessàries aproximacions completament nosupervisades per tal d'explotar el coneixement que hi ha en elles. La proposta d'aquesta tesi és la d'incorporar tècniques de clustering a l'adquisició de patrons per a extracció d'informació, per tal de reduir encara més els elements de supervisió involucrats en el procés En particular, el treball se centra en el problema de la detecció de relacions. L'assoliment d'aquest objectiu final ha requerit, en primer lloc, el considerar les diferents estratègies en què aquesta combinació es podia dur a terme; en segon lloc, el desenvolupar o adaptar algorismes de clustering adequats a les nostres necessitats; i en tercer lloc, el disseny de procediments d'adquisició de patrons que incorporessin la informació de clustering. Al final d'aquesta tesi, havíem estat capaços de desenvolupar i implementar una aproximació per a l'aprenentatge de patrons per a detecció de relacions que, utilitzant tècniques de clustering i un mínim de supervisió humana, és competitiu i fins i tot supera altres aproximacions comparables en l'estat de l'art.Information extraction is the natural language processing area whose goal is to obtain structured data from the relevant information contained in textual fragments. Information extraction requires a significant amount of linguistic knowledge. The specificity of such knowledge supposes a drawback on the portability of the systems, as a change of language, domain or style demands a costly human effort. Machine learning techniques have been applied for decades so as to overcome this portability bottleneck¿progressively reducing the amount of involved human supervision. However, as the availability of large document collections increases, completely unsupervised approaches become necessary in order to mine the knowledge contained in them. The proposal of this thesis is to incorporate clustering techniques into pattern learning for information extraction, in order to further reduce the elements of supervision involved in the process. In particular, the work focuses on the problem of relation detection. The achievement of this ultimate goal has required, first, considering the different strategies in which this combination could be carried out; second, developing or adapting clustering algorithms suitable to our needs; and third, devising pattern learning procedures which incorporated clustering information. By the end of this thesis, we had been able to develop and implement an approach for learning of relation detection patterns which, using clustering techniques and minimal human supervision, is competitive and even outperforms other comparable approaches in the state of the art.Postprint (published version
    corecore