471 research outputs found

    Trennung und Schätzung der Anzahl von Audiosignalquellen mit Zeit- und Frequenzüberlappung

    Get PDF
    Everyday audio recordings involve mixture signals: music contains a mixture of instruments; in a meeting or conference, there is a mixture of human voices. For these mixtures, automatically separating or estimating the number of sources is a challenging task. A common assumption when processing mixtures in the time-frequency domain is that sources are not fully overlapped. However, in this work we consider some cases where the overlap is severe — for instance, when instruments play the same note (unison) or when many people speak concurrently ("cocktail party") — highlighting the need for new representations and more powerful models. To address the problems of source separation and count estimation, we use conventional signal processing techniques as well as deep neural networks (DNN). We first address the source separation problem for unison instrument mixtures, studying the distinct spectro-temporal modulations caused by vibrato. To exploit these modulations, we developed a method based on time warping, informed by an estimate of the fundamental frequency. For cases where such estimates are not available, we present an unsupervised model, inspired by the way humans group time-varying sources (common fate). This contribution comes with a novel representation that improves separation for overlapped and modulated sources on unison mixtures but also improves vocal and accompaniment separation when used as an input for a DNN model. Then, we focus on estimating the number of sources in a mixture, which is important for real-world scenarios. Our work on count estimation was motivated by a study on how humans can address this task, which lead us to conduct listening experiments, confirming that humans are only able to estimate the number of up to four sources correctly. To answer the question of whether machines can perform similarly, we present a DNN architecture, trained to estimate the number of concurrent speakers. Our results show improvements compared to other methods, and the model even outperformed humans on the same task. In both the source separation and source count estimation tasks, the key contribution of this thesis is the concept of “modulation”, which is important to computationally mimic human performance. Our proposed Common Fate Transform is an adequate representation to disentangle overlapping signals for separation, and an inspection of our DNN count estimation model revealed that it proceeds to find modulation-like intermediate features.Im Alltag sind wir von gemischten Signalen umgeben: Musik besteht aus einer Mischung von Instrumenten; in einem Meeting oder auf einer Konferenz sind wir einer Mischung menschlicher Stimmen ausgesetzt. Für diese Mischungen ist die automatische Quellentrennung oder die Bestimmung der Anzahl an Quellen eine anspruchsvolle Aufgabe. Eine häufige Annahme bei der Verarbeitung von gemischten Signalen im Zeit-Frequenzbereich ist, dass die Quellen sich nicht vollständig überlappen. In dieser Arbeit betrachten wir jedoch einige Fälle, in denen die Überlappung immens ist zum Beispiel, wenn Instrumente den gleichen Ton spielen (unisono) oder wenn viele Menschen gleichzeitig sprechen (Cocktailparty) —, so dass neue Signal-Repräsentationen und leistungsfähigere Modelle notwendig sind. Um die zwei genannten Probleme zu bewältigen, verwenden wir sowohl konventionelle Signalverbeitungsmethoden als auch tiefgehende neuronale Netze (DNN). Wir gehen zunächst auf das Problem der Quellentrennung für Unisono-Instrumentenmischungen ein und untersuchen die speziellen, durch Vibrato ausgelösten, zeitlich-spektralen Modulationen. Um diese Modulationen auszunutzen entwickelten wir eine Methode, die auf Zeitverzerrung basiert und eine Schätzung der Grundfrequenz als zusätzliche Information nutzt. Für Fälle, in denen diese Schätzungen nicht verfügbar sind, stellen wir ein unüberwachtes Modell vor, das inspiriert ist von der Art und Weise, wie Menschen zeitveränderliche Quellen gruppieren (Common Fate). Dieser Beitrag enthält eine neuartige Repräsentation, die die Separierbarkeit für überlappte und modulierte Quellen in Unisono-Mischungen erhöht, aber auch die Trennung in Gesang und Begleitung verbessert, wenn sie in einem DNN-Modell verwendet wird. Im Weiteren beschäftigen wir uns mit der Schätzung der Anzahl von Quellen in einer Mischung, was für reale Szenarien wichtig ist. Unsere Arbeit an der Schätzung der Anzahl war motiviert durch eine Studie, die zeigt, wie wir Menschen diese Aufgabe angehen. Dies hat uns dazu veranlasst, eigene Hörexperimente durchzuführen, die bestätigten, dass Menschen nur in der Lage sind, die Anzahl von bis zu vier Quellen korrekt abzuschätzen. Um nun die Frage zu beantworten, ob Maschinen dies ähnlich gut können, stellen wir eine DNN-Architektur vor, die erlernt hat, die Anzahl der gleichzeitig sprechenden Sprecher zu ermitteln. Die Ergebnisse zeigen Verbesserungen im Vergleich zu anderen Methoden, aber vor allem auch im Vergleich zu menschlichen Hörern. Sowohl bei der Quellentrennung als auch bei der Schätzung der Anzahl an Quellen ist ein Kernbeitrag dieser Arbeit das Konzept der “Modulation”, welches wichtig ist, um die Strategien von Menschen mittels Computern nachzuahmen. Unsere vorgeschlagene Common Fate Transformation ist eine adäquate Darstellung, um die Überlappung von Signalen für die Trennung zugänglich zu machen und eine Inspektion unseres DNN-Zählmodells ergab schließlich, dass sich auch hier modulationsähnliche Merkmale finden lassen

    Audio source separation for music in low-latency and high-latency scenarios

    Get PDF
    Aquesta tesi proposa mètodes per tractar les limitacions de les tècniques existents de separació de fonts musicals en condicions de baixa i alta latència. En primer lloc, ens centrem en els mètodes amb un baix cost computacional i baixa latència. Proposem l'ús de la regularització de Tikhonov com a mètode de descomposició de l'espectre en el context de baixa latència. El comparem amb les tècniques existents en tasques d'estimació i seguiment dels tons, que són passos crucials en molts mètodes de separació. A continuació utilitzem i avaluem el mètode de descomposició de l'espectre en tasques de separació de veu cantada, baix i percussió. En segon lloc, proposem diversos mètodes d'alta latència que milloren la separació de la veu cantada, gràcies al modelatge de components específics, com la respiració i les consonants. Finalment, explorem l'ús de correlacions temporals i anotacions manuals per millorar la separació dels instruments de percussió i dels senyals musicals polifònics complexes.Esta tesis propone métodos para tratar las limitaciones de las técnicas existentes de separación de fuentes musicales en condiciones de baja y alta latencia. En primer lugar, nos centramos en los métodos con un bajo coste computacional y baja latencia. Proponemos el uso de la regularización de Tikhonov como método de descomposición del espectro en el contexto de baja latencia. Lo comparamos con las técnicas existentes en tareas de estimación y seguimiento de los tonos, que son pasos cruciales en muchos métodos de separación. A continuación utilizamos y evaluamos el método de descomposición del espectro en tareas de separación de voz cantada, bajo y percusión. En segundo lugar, proponemos varios métodos de alta latencia que mejoran la separación de la voz cantada, gracias al modelado de componentes que a menudo no se toman en cuenta, como la respiración y las consonantes. Finalmente, exploramos el uso de correlaciones temporales y anotaciones manuales para mejorar la separación de los instrumentos de percusión y señales musicales polifónicas complejas.This thesis proposes specific methods to address the limitations of current music source separation methods in low-latency and high-latency scenarios. First, we focus on methods with low computational cost and low latency. We propose the use of Tikhonov regularization as a method for spectrum decomposition in the low-latency context. We compare it to existing techniques in pitch estimation and tracking tasks, crucial steps in many separation methods. We then use the proposed spectrum decomposition method in low-latency separation tasks targeting singing voice, bass and drums. Second, we propose several high-latency methods that improve the separation of singing voice by modeling components that are often not accounted for, such as breathiness and consonants. Finally, we explore using temporal correlations and human annotations to enhance the separation of drums and complex polyphonic music signals

    Innovative Algorithms and Evaluation Methods for Biological Motif Finding

    Get PDF
    Biological motifs are defined as overly recurring sub-patterns in biological systems. Sequence motifs and network motifs are the examples of biological motifs. Due to the wide range of applications, many algorithms and computational tools have been developed for efficient search for biological motifs. Therefore, there are more computationally derived motifs than experimentally validated motifs, and how to validate the biological significance of the ‘candidate motifs’ becomes an important question. Some of sequence motifs are verified by their structural similarities or their functional roles in DNA or protein sequences, and stored in databases. However, biological role of network motifs is still invalidated and currently no databases exist for this purpose. In this thesis, we focus not only on the computational efficiency but also on the biological meanings of the motifs. We provide an efficient way to incorporate biological information with clustering analysis methods: For example, a sparse nonnegative matrix factorization (SNMF) method is used with Chou-Fasman parameters for the protein motif finding. Biological network motifs are searched by various clustering algorithms with Gene ontology (GO) information. Experimental results show that the algorithms perform better than existing algorithms by producing a larger number of high-quality of biological motifs. In addition, we apply biological network motifs for the discovery of essential proteins. Essential proteins are defined as a minimum set of proteins which are vital for development to a fertile adult and in a cellular life in an organism. We design a new centrality algorithm with biological network motifs, named MCGO, and score proteins in a protein-protein interaction (PPI) network to find essential proteins. MCGO is also combined with other centrality measures to predict essential proteins using machine learning techniques. We have three contributions to the study of biological motifs through this thesis; 1) Clustering analysis is efficiently used in this work and biological information is easily integrated with the analysis; 2) We focus more on the biological meanings of motifs by adding biological knowledge in the algorithms and by suggesting biologically related evaluation methods. 3) Biological network motifs are successfully applied to a practical application of prediction of essential proteins

    A Comprehensive Review on Audio based Musical Instrument Recognition: Human-Machine Interaction towards Industry 4.0

    Get PDF
    Over the last two decades, the application of machine technology has shifted from industrial to residential use. Further, advances in hardware and software sectors have led machine technology to its utmost application, the human-machine interaction, a multimodal communication. Multimodal communication refers to the integration of various modalities of information like speech, image, music, gesture, and facial expressions. Music is the non-verbal type of communication that humans often use to express their minds. Thus, Music Information Retrieval (MIR) has become a booming field of research and has gained a lot of interest from the academic community, music industry, and vast multimedia users. The problem in MIR is accessing and retrieving a specific type of music as demanded from the extensive music data. The most inherent problem in MIR is music classification. The essential MIR tasks are artist identification, genre classification, mood classification, music annotation, and instrument recognition. Among these, instrument recognition is a vital sub-task in MIR for various reasons, including retrieval of music information, sound source separation, and automatic music transcription. In recent past years, many researchers have reported different machine learning techniques for musical instrument recognition and proved some of them to be good ones. This article provides a systematic, comprehensive review of the advanced machine learning techniques used for musical instrument recognition. We have stressed on different audio feature descriptors of common choices of classifier learning used for musical instrument recognition. This review article emphasizes on the recent developments in music classification techniques and discusses a few associated future research problems

    Sparse Modeling for Image and Vision Processing

    Get PDF
    In recent years, a large amount of multi-disciplinary research has been conducted on sparse models and their applications. In statistics and machine learning, the sparsity principle is used to perform model selection---that is, automatically selecting a simple model among a large collection of them. In signal processing, sparse coding consists of representing data with linear combinations of a few dictionary elements. Subsequently, the corresponding tools have been widely adopted by several scientific communities such as neuroscience, bioinformatics, or computer vision. The goal of this monograph is to offer a self-contained view of sparse modeling for visual recognition and image processing. More specifically, we focus on applications where the dictionary is learned and adapted to data, yielding a compact representation that has been successful in various contexts.Comment: 205 pages, to appear in Foundations and Trends in Computer Graphics and Visio

    Automatic transcription of polyphonic music exploiting temporal evolution

    Get PDF
    PhDAutomatic music transcription is the process of converting an audio recording into a symbolic representation using musical notation. It has numerous applications in music information retrieval, computational musicology, and the creation of interactive systems. Even for expert musicians, transcribing polyphonic pieces of music is not a trivial task, and while the problem of automatic pitch estimation for monophonic signals is considered to be solved, the creation of an automated system able to transcribe polyphonic music without setting restrictions on the degree of polyphony and the instrument type still remains open. In this thesis, research on automatic transcription is performed by explicitly incorporating information on the temporal evolution of sounds. First efforts address the problem by focusing on signal processing techniques and by proposing audio features utilising temporal characteristics. Techniques for note onset and offset detection are also utilised for improving transcription performance. Subsequent approaches propose transcription models based on shift-invariant probabilistic latent component analysis (SI-PLCA), modeling the temporal evolution of notes in a multiple-instrument case and supporting frequency modulations in produced notes. Datasets and annotations for transcription research have also been created during this work. Proposed systems have been privately as well as publicly evaluated within the Music Information Retrieval Evaluation eXchange (MIREX) framework. Proposed systems have been shown to outperform several state-of-the-art transcription approaches. Developed techniques have also been employed for other tasks related to music technology, such as for key modulation detection, temperament estimation, and automatic piano tutoring. Finally, proposed music transcription models have also been utilized in a wider context, namely for modeling acoustic scenes

    Proceedings of the Detection and Classification of Acoustic Scenes and Events 2016 Workshop (DCASE2016)

    Get PDF

    Masked Conditional Neural Networks for Sound Recognition

    Get PDF
    Sound recognition has been studied for decades to grant machines the human hearing ability. The advances in this field help in a range of applications, from industrial ones such as fault detection in machines and noise monitoring to household applications such as surveillance and hearing aids. The problem of sound recognition like any pattern recognition task involves the reliability of the extracted features and the recognition model. The problem has been approached through decades of crafted features used collaboratively with models based on neural networks or statistical models such as Gaussian Mixtures and Hidden Markov models. Neural networks are currently being considered as a method to automate the feature extraction stage together with the already incorporated role of recognition. The performance of such models is approaching handcrafted features. Current neural network based models are not primarily designed for the nature of the sound signal, which may not optimally harness distinctive properties of the signal. This thesis proposes neural network models that exploit the nature of the time-frequency representation of the sound signal. We propose the ConditionaL Neural Network (CLNN) and the Masked ConditionaL Neural Network (MCLNN). The CLNN is designed to account for the temporal dimension of a signal and behaves as the framework for the MCLNN. The MCLNN allows a filterbank-like behaviour to be embedded within the network using a specially designed binary mask. The masking subdivides the frequency range of a signal into bands and allows concurrent consideration of different feature combinations analogous to the manual handcrafting of the optimum set of features for a recognition task. The proposed models have been evaluated through an extensive set of experiments using a range of publicly available datasets of music genres and environmental sounds, where they surpass state-of-the-art Convolutional Neural Networks and several hand-crafted attempts
    corecore