4,009 research outputs found

    Data-Driven Vehicle Trajectory Forecasting

    Full text link
    An active area of research is to increase the safety of self-driving vehicles. Although safety cannot be guarenteed completely, the capability of a vehicle to predict the future trajectories of its surrounding vehicles could help ensure this notion of safety to a greater deal. We cast the trajectory forecast problem in a multi-time step forecasting problem and develop a Convolutional Neural Network based approach to learn from trajectory sequences generated from completely raw dataset in real-time. Results show improvement over baselines.Comment: Published in ECML KNOWMe: 2nd International Workshop on Knowledge Discovery from Mobility and Transportation Systems 201

    A Transfer Learning Approach for Microstructure Reconstruction and Structure-property Predictions

    Full text link
    Stochastic microstructure reconstruction has become an indispensable part of computational materials science, but ongoing developments are specific to particular material systems. In this paper, we address this generality problem by presenting a transfer learning-based approach for microstructure reconstruction and structure-property predictions that is applicable to a wide range of material systems. The proposed approach incorporates an encoder-decoder process and feature-matching optimization using a deep convolutional network. For microstructure reconstruction, model pruning is implemented in order to study the correlation between the microstructural features and hierarchical layers within the deep convolutional network. Knowledge obtained in model pruning is then leveraged in the development of a structure-property predictive model to determine the network architecture and initialization conditions. The generality of the approach is demonstrated numerically for a wide range of material microstructures with geometrical characteristics of varying complexity. Unlike previous approaches that only apply to specific material systems or require a significant amount of prior knowledge in model selection and hyper-parameter tuning, the present approach provides an off-the-shelf solution to handle complex microstructures, and has the potential of expediting the discovery of new materials.Comment: Submitted to Scientific Reports, under revie

    Mapping Auto-context Decision Forests to Deep ConvNets for Semantic Segmentation

    Full text link
    We consider the task of pixel-wise semantic segmentation given a small set of labeled training images. Among two of the most popular techniques to address this task are Decision Forests (DF) and Neural Networks (NN). In this work, we explore the relationship between two special forms of these techniques: stacked DFs (namely Auto-context) and deep Convolutional Neural Networks (ConvNet). Our main contribution is to show that Auto-context can be mapped to a deep ConvNet with novel architecture, and thereby trained end-to-end. This mapping can be used as an initialization of a deep ConvNet, enabling training even in the face of very limited amounts of training data. We also demonstrate an approximate mapping back from the refined ConvNet to a second stacked DF, with improved performance over the original. We experimentally verify that these mappings outperform stacked DFs for two different applications in computer vision and biology: Kinect-based body part labeling from depth images, and somite segmentation in microscopy images of developing zebrafish. Finally, we revisit the core mapping from a Decision Tree (DT) to a NN, and show that it is also possible to map a fuzzy DT, with sigmoidal split decisions, to a NN. This addresses multiple limitations of the previous mapping, and yields new insights into the popular Rectified Linear Unit (ReLU), and more recently proposed concatenated ReLU (CReLU), activation functions

    Machine Learning for Wireless Communications in the Internet of Things: A Comprehensive Survey

    Full text link
    The Internet of Things (IoT) is expected to require more effective and efficient wireless communications than ever before. For this reason, techniques such as spectrum sharing, dynamic spectrum access, extraction of signal intelligence and optimized routing will soon become essential components of the IoT wireless communication paradigm. Given that the majority of the IoT will be composed of tiny, mobile, and energy-constrained devices, traditional techniques based on a priori network optimization may not be suitable, since (i) an accurate model of the environment may not be readily available in practical scenarios; (ii) the computational requirements of traditional optimization techniques may prove unbearable for IoT devices. To address the above challenges, much research has been devoted to exploring the use of machine learning to address problems in the IoT wireless communications domain. This work provides a comprehensive survey of the state of the art in the application of machine learning techniques to address key problems in IoT wireless communications with an emphasis on its ad hoc networking aspect. First, we present extensive background notions of machine learning techniques. Then, by adopting a bottom-up approach, we examine existing work on machine learning for the IoT at the physical, data-link and network layer of the protocol stack. Thereafter, we discuss directions taken by the community towards hardware implementation to ensure the feasibility of these techniques. Additionally, before concluding, we also provide a brief discussion of the application of machine learning in IoT beyond wireless communication. Finally, each of these discussions is accompanied by a detailed analysis of the related open problems and challenges.Comment: Ad Hoc Networks Journa

    Machine learning in acoustics: theory and applications

    Full text link
    Acoustic data provide scientific and engineering insights in fields ranging from biology and communications to ocean and Earth science. We survey the recent advances and transformative potential of machine learning (ML), including deep learning, in the field of acoustics. ML is a broad family of techniques, which are often based in statistics, for automatically detecting and utilizing patterns in data. Relative to conventional acoustics and signal processing, ML is data-driven. Given sufficient training data, ML can discover complex relationships between features and desired labels or actions, or between features themselves. With large volumes of training data, ML can discover models describing complex acoustic phenomena such as human speech and reverberation. ML in acoustics is rapidly developing with compelling results and significant future promise. We first introduce ML, then highlight ML developments in four acoustics research areas: source localization in speech processing, source localization in ocean acoustics, bioacoustics, and environmental sounds in everyday scenes.Comment: Published with free access in Journal of the Acoustical Society of America, 27 Nov. 201

    Learning Sparse Deep Feedforward Networks via Tree Skeleton Expansion

    Full text link
    Despite the popularity of deep learning, structure learning for deep models remains a relatively under-explored area. In contrast, structure learning has been studied extensively for probabilistic graphical models (PGMs). In particular, an efficient algorithm has been developed for learning a class of tree-structured PGMs called hierarchical latent tree models (HLTMs), where there is a layer of observed variables at the bottom and multiple layers of latent variables on top. In this paper, we propose a simple method for learning the structures of feedforward neural networks (FNNs) based on HLTMs. The idea is to expand the connections in the tree skeletons from HLTMs and to use the resulting structures for FNNs. An important characteristic of FNN structures learned this way is that they are sparse. We present extensive empirical results to show that, compared with standard FNNs tuned-manually, sparse FNNs learned by our method achieve better or comparable classification performance with much fewer parameters. They are also more interpretable.Comment: 7 page

    MMLSpark: Unifying Machine Learning Ecosystems at Massive Scales

    Full text link
    We introduce Microsoft Machine Learning for Apache Spark (MMLSpark), an ecosystem of enhancements that expand the Apache Spark distributed computing library to tackle problems in Deep Learning, Micro-Service Orchestration, Gradient Boosting, Model Interpretability, and other areas of modern computation. Furthermore, we present a novel system called Spark Serving that allows users to run any Apache Spark program as a distributed, sub-millisecond latency web service backed by their existing Spark Cluster. All MMLSpark contributions have the same API to enable simple composition across frameworks and usage across batch, streaming, and RESTful web serving scenarios on static, elastic, or serverless clusters. We showcase MMLSpark by creating a method for deep object detection capable of learning without human labeled data and demonstrate its effectiveness for Snow Leopard conservation

    Deep Learning Convolutional Networks for Multiphoton Microscopy Vasculature Segmentation

    Full text link
    Recently there has been an increasing trend to use deep learning frameworks for both 2D consumer images and for 3D medical images. However, there has been little effort to use deep frameworks for volumetric vascular segmentation. We wanted to address this by providing a freely available dataset of 12 annotated two-photon vasculature microscopy stacks. We demonstrated the use of deep learning framework consisting both 2D and 3D convolutional filters (ConvNet). Our hybrid 2D-3D architecture produced promising segmentation result. We derived the architectures from Lee et al. who used the ZNN framework initially designed for electron microscope image segmentation. We hope that by sharing our volumetric vasculature datasets, we will inspire other researchers to experiment with vasculature dataset and improve the used network architectures.Comment: 23 pages, 10 figure

    Multigrid Predictive Filter Flow for Unsupervised Learning on Videos

    Full text link
    We introduce multigrid Predictive Filter Flow (mgPFF), a framework for unsupervised learning on videos. The mgPFF takes as input a pair of frames and outputs per-pixel filters to warp one frame to the other. Compared to optical flow used for warping frames, mgPFF is more powerful in modeling sub-pixel movement and dealing with corruption (e.g., motion blur). We develop a multigrid coarse-to-fine modeling strategy that avoids the requirement of learning large filters to capture large displacement. This allows us to train an extremely compact model (4.6MB) which operates in a progressive way over multiple resolutions with shared weights. We train mgPFF on unsupervised, free-form videos and show that mgPFF is able to not only estimate long-range flow for frame reconstruction and detect video shot transitions, but also readily amendable for video object segmentation and pose tracking, where it substantially outperforms the published state-of-the-art without bells and whistles. Moreover, owing to mgPFF's nature of per-pixel filter prediction, we have the unique opportunity to visualize how each pixel is evolving during solving these tasks, thus gaining better interpretability.Comment: webpage (https://www.ics.uci.edu/~skong2/mgpff.html

    Deep Learning and its Application to LHC Physics

    Full text link
    Machine learning has played an important role in the analysis of high-energy physics data for decades. The emergence of deep learning in 2012 allowed for machine learning tools which could adeptly handle higher-dimensional and more complex problems than previously feasible. This review is aimed at the reader who is familiar with high energy physics but not machine learning. The connections between machine learning and high energy physics data analysis are explored, followed by an introduction to the core concepts of neural networks, examples of the key results demonstrating the power of deep learning for analysis of LHC data, and discussion of future prospects and concerns.Comment: Posted with permission from the Annual Review of Nuclear and Particle Science, Volume 68. (c) 2018 by Annual Reviews, http://www.annualreviews.or
    corecore