441 research outputs found

    A Review of the Challenges of Using Deep Learning Algorithms to Support Decision-Making in Agricultural Activities

    Get PDF
    Deep Learning has been successfully applied to image recognition, speech recognition, and natural language processing in recent years. Therefore, there has been an incentive to apply it in other fields as well. The field of agriculture is one of the most important fields in which the application of deep learning still needs to be explored, as it has a direct impact on human well-being. In particular, there is a need to explore how deep learning models can be used as a tool for optimal planting, land use, yield improvement, production/disease/pest control, and other activities. The vast amount of data received from sensors in smart farms makes it possible to use deep learning as a model for decision-making in this field. In agriculture, no two environments are exactly alike, which makes testing, validating, and successfully implementing such technologies much more complex than in most other industries. This paper reviews some recent scientific developments in the field of deep learning that have been applied to agriculture, and highlights some challenges and potential solutions using deep learning algorithms in agriculture. The results in this paper indicate that by employing new methods from deep learning, higher performance in terms of accuracy and lower inference time can be achieved, and the models can be made useful in real-world applications. Finally, some opportunities for future research in this area are suggested.This work is supported by the R&D Project BioDAgro—Sistema operacional inteligente de informação e suporte á decisão em AgroBiodiversidade, project PD20-00011, promoted by Fundação La Caixa and Fundação para a Ciência e a Tecnologia, taking place at the C-MAST-Centre for Mechanical and Aerospace Sciences and Technology, Department of Electromechanical Engineering of the University of Beira Interior, Covilhã, Portugal.info:eu-repo/semantics/publishedVersio

    Methods for Detecting and Classifying Weeds, Diseases and Fruits Using AI to Improve the Sustainability of Agricultural Crops: A Review

    Get PDF
    The rapid growth of the world’s population has put significant pressure on agriculture to meet the increasing demand for food. In this context, agriculture faces multiple challenges, one of which is weed management. While herbicides have traditionally been used to control weed growth, their excessive and random use can lead to environmental pollution and herbicide resistance. To address these challenges, in the agricultural industry, deep learning models have become a possible tool for decision-making by using massive amounts of information collected from smart farm sensors. However, agriculture’s varied environments pose a challenge to testing and adopting new technology effectively. This study reviews recent advances in deep learning models and methods for detecting and classifying weeds to improve the sustainability of agricultural crops. The study compares performance metrics such as recall, accuracy, F1-Score, and precision, and highlights the adoption of novel techniques, such as attention mechanisms, single-stage detection models, and new lightweight models, which can enhance the model’s performance. The use of deep learning methods in weed detection and classification has shown great potential in improving crop yields and reducing adverse environmental impacts of agriculture. The reduction in herbicide use can prevent pollution of water, food, land, and the ecosystem and avoid the resistance of weeds to chemicals. This can help mitigate and adapt to climate change by minimizing agriculture’s environmental impact and improving the sustainability of the agricultural sector. In addition to discussing recent advances, this study also highlights the challenges faced in adopting new technology in agriculture and proposes novel techniques to enhance the performance of deep learning models. The study provides valuable insights into the latest advances and challenges in process systems engineering and technology for agricultural activities

    A Rapidly Deployable Classification System using Visual Data for the Application of Precision Weed Management

    Full text link
    In this work we demonstrate a rapidly deployable weed classification system that uses visual data to enable autonomous precision weeding without making prior assumptions about which weed species are present in a given field. Previous work in this area relies on having prior knowledge of the weed species present in the field. This assumption cannot always hold true for every field, and thus limits the use of weed classification systems based on this assumption. In this work, we obviate this assumption and introduce a rapidly deployable approach able to operate on any field without any weed species assumptions prior to deployment. We present a three stage pipeline for the implementation of our weed classification system consisting of initial field surveillance, offline processing and selective labelling, and automated precision weeding. The key characteristic of our approach is the combination of plant clustering and selective labelling which is what enables our system to operate without prior weed species knowledge. Testing using field data we are able to label 12.3 times fewer images than traditional full labelling whilst reducing classification accuracy by only 14%.Comment: 36 pages, 14 figures, published Computers and Electronics in Agriculture Vol. 14

    Deep learning for computer vision constrained by limited supervision

    Get PDF
    This thesis presents the research work conducted on developing algo- rithms capable of training neural networks for image classification and re- gression in low supervision settings. The research was conducted on publicly available benchmark image datasets as well as real world data with appli- cations to herbage quality estimation in an agri-tech scope at the VistaMilk SFI centre. Topics include label noise and web-crawled datasets where some images have an incorrect classification label, semi-supervised learning where only a small part of the available images have been annotated by humans and unsupervised learning where the images are not annotated. The principal contributions are summarized as follows. Label noise: a study highlighting the dual in- and out-of-distribution nature of web-noise; a noise detection metric than can independently retrieve each noise type; an observation of the linear separability of in- and out-of-distribution images in unsupervised contrastive feature spaces; two noise-robust algorithms DSOS and SNCF that iteratively improve the state-of-the-art accuracy on the mini-Webvision dataset. Semi-supervised learning: we use unsupervised features to propagate labels from a few labeled examples to the entire dataset; ReLaB an algorithm that allows to decrease the classification error up to 8% with one labeled representative image on CIFAR-10. Biomass composition estimation from images: two semi-supervised approaches that utilize unlabeled images either through an approximate annotator or by adapting semi-supervised algorithms from the image classification litterature. To scale the biomass to drone images, we use super-resolution paired with semi-supervised learning. Early results on grass biomass estimation show the feasibility of automating the process with accuracies on par or better than human experts. The conclusion of the thesis will summarize the research contributions and discuss thoughts on future research that I believe should be tackled in the field of low supervision computer vision

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Advancing Land Cover Mapping in Remote Sensing with Deep Learning

    Get PDF
    Automatic mapping of land cover in remote sensing data plays an increasingly significant role in several earth observation (EO) applications, such as sustainable development, autonomous agriculture, and urban planning. Due to the complexity of the real ground surface and environment, accurate classification of land cover types is facing many challenges. This thesis provides novel deep learning-based solutions to land cover mapping challenges such as how to deal with intricate objects and imbalanced classes in multi-spectral and high-spatial resolution remote sensing data. The first work presents a novel model to learn richer multi-scale and global contextual representations in very high-resolution remote sensing images, namely the dense dilated convolutions' merging (DDCM) network. The proposed method is light-weighted, flexible and extendable, so that it can be used as a simple yet effective encoder and decoder module to address different classification and semantic mapping challenges. Intensive experiments on different benchmark remote sensing datasets demonstrate that the proposed method can achieve better performance but consume much fewer computation resources compared with other published methods. Next, a novel graph model is developed for capturing long-range pixel dependencies in remote sensing images to improve land cover mapping. One key component in the method is the self-constructing graph (SCG) module that can effectively construct global context relations (latent graph structure) without requiring prior knowledge graphs. The proposed SCG-based models achieved competitive performance on different representative remote sensing datasets with faster training and lower computational cost compared to strong baseline models. The third work introduces a new framework, namely the multi-view self-constructing graph (MSCG) network, to extend the vanilla SCG model to be able to capture multi-view context representations with rotation invariance to achieve improved segmentation performance. Meanwhile, a novel adaptive class weighting loss function is developed to alleviate the issue of class imbalance commonly found in EO datasets for semantic segmentation. Experiments on benchmark data demonstrate the proposed framework is computationally efficient and robust to produce improved segmentation results for imbalanced classes. To address the key challenges in multi-modal land cover mapping of remote sensing data, namely, 'what', 'how' and 'where' to effectively fuse multi-source features and to efficiently learn optimal joint representations of different modalities, the last work presents a compact and scalable multi-modal deep learning framework (MultiModNet) based on two novel modules: the pyramid attention fusion module and the gated fusion unit. The proposed MultiModNet outperforms the strong baselines on two representative remote sensing datasets with fewer parameters and at a lower computational cost. Extensive ablation studies also validate the effectiveness and flexibility of the framework
    corecore