113 research outputs found

    Discrete Multi-modal Hashing with Canonical Views for Robust Mobile Landmark Search

    Full text link
    Mobile landmark search (MLS) recently receives increasing attention for its great practical values. However, it still remains unsolved due to two important challenges. One is high bandwidth consumption of query transmission, and the other is the huge visual variations of query images sent from mobile devices. In this paper, we propose a novel hashing scheme, named as canonical view based discrete multi-modal hashing (CV-DMH), to handle these problems via a novel three-stage learning procedure. First, a submodular function is designed to measure visual representativeness and redundancy of a view set. With it, canonical views, which capture key visual appearances of landmark with limited redundancy, are efficiently discovered with an iterative mining strategy. Second, multi-modal sparse coding is applied to transform visual features from multiple modalities into an intermediate representation. It can robustly and adaptively characterize visual contents of varied landmark images with certain canonical views. Finally, compact binary codes are learned on intermediate representation within a tailored discrete binary embedding model which preserves visual relations of images measured with canonical views and removes the involved noises. In this part, we develop a new augmented Lagrangian multiplier (ALM) based optimization method to directly solve the discrete binary codes. We can not only explicitly deal with the discrete constraint, but also consider the bit-uncorrelated constraint and balance constraint together. Experiments on real world landmark datasets demonstrate the superior performance of CV-DMH over several state-of-the-art methods

    MESH : a flexible manifold-embedded semantic hashing for cross-modal retrieval

    Get PDF
    Hashing based methods for cross-modal retrieval has been widely explored in recent years. However, most of them mainly focus on the preservation of neighborhood relationship and label consistency, while ignore the proximity of neighbors and proximity of classes, which degrades the discrimination of hash codes. And most of them learn hash codes and hashing functions simultaneously, which limits the flexibility of algorithms. To address these issues, in this article, we propose a two-step cross-modal retrieval method named Manifold-Embedded Semantic Hashing (MESH). It exploits Local Linear Embedding to model the neighborhood proximity and uses class semantic embeddings to consider the proximity of classes. By so doing, MESH can not only extract the manifold structure in different modalities, but also can embed the class semantic information into hash codes to further improve the discrimination of learned hash codes. Moreover, the two-step scheme makes MESH flexible to various hashing functions. Extensive experimental results on three datasets show that MESH is superior to 10 state-of-the-art cross-modal hashing methods. Moreover, MESH also demonstrates superiority on deep features compared with the deep cross-modal hashing method. © 2013 IEEE

    Learning compact hashing codes with complex objectives from multiple sources for large scale similarity search

    Get PDF
    Similarity search is a key problem in many real world applications including image and text retrieval, content reuse detection and collaborative filtering. The purpose of similarity search is to identify similar data examples given a query example. Due to the explosive growth of the Internet, a huge amount of data such as texts, images and videos has been generated, which indicates that efficient large scale similarity search becomes more important.^ Hashing methods have become popular for large scale similarity search due to their computational and memory efficiency. These hashing methods design compact binary codes to represent data examples so that similar examples are mapped into similar codes. This dissertation addresses five major problems for utilizing supervised information from multiple sources in hashing with respect to different objectives. Firstly, we address the problem of incorporating semantic tags by modeling the latent correlations between tags and data examples. More precisely, the hashing codes are learned in a unified semi-supervised framework by simultaneously preserving the similarities between data examples and ensuring the tag consistency via a latent factor model. Secondly, we solve the missing data problem by latent subspace learning from multiple sources. The hashing codes are learned by enforcing the data consistency among different sources. Thirdly, we address the problem of hashing on structured data by graph learning. A weighted graph is constructed based on the structured knowledge from the data. The hashing codes are then learned by preserving the graph similarities. Fourthly, we address the problem of learning high ranking quality hashing codes by utilizing the relevance judgments from users. The hashing code/function is learned via optimizing a commonly used non-smooth non-convex ranking measure, NDCG. Finally, we deal with the problem of insufficient supervision by active learning. We propose to actively select the most informative data examples and tags in a joint manner based on the selection criteria that both the data examples and tags should be most uncertain and dissimilar with each other.^ Extensive experiments on several large scale datasets demonstrate the superior performance of the proposed approaches over several state-of-the-art hashing methods from different perspectives

    Deep Sketch Hashing: Fast Free-hand Sketch-Based Image Retrieval

    Full text link
    Free-hand sketch-based image retrieval (SBIR) is a specific cross-view retrieval task, in which queries are abstract and ambiguous sketches while the retrieval database is formed with natural images. Work in this area mainly focuses on extracting representative and shared features for sketches and natural images. However, these can neither cope well with the geometric distortion between sketches and images nor be feasible for large-scale SBIR due to the heavy continuous-valued distance computation. In this paper, we speed up SBIR by introducing a novel binary coding method, named \textbf{Deep Sketch Hashing} (DSH), where a semi-heterogeneous deep architecture is proposed and incorporated into an end-to-end binary coding framework. Specifically, three convolutional neural networks are utilized to encode free-hand sketches, natural images and, especially, the auxiliary sketch-tokens which are adopted as bridges to mitigate the sketch-image geometric distortion. The learned DSH codes can effectively capture the cross-view similarities as well as the intrinsic semantic correlations between different categories. To the best of our knowledge, DSH is the first hashing work specifically designed for category-level SBIR with an end-to-end deep architecture. The proposed DSH is comprehensively evaluated on two large-scale datasets of TU-Berlin Extension and Sketchy, and the experiments consistently show DSH's superior SBIR accuracies over several state-of-the-art methods, while achieving significantly reduced retrieval time and memory footprint.Comment: This paper will appear as a spotlight paper in CVPR201

    Hashing for Multimedia Similarity Modeling and Large-Scale Retrieval

    Get PDF
    In recent years, the amount of multimedia data such as images, texts, and videos have been growing rapidly on the Internet. Motivated by such trends, this thesis is dedicated to exploiting hashing-based solutions to reveal multimedia data correlations and support intra-media and inter-media similarity search among huge volumes of multimedia data. We start by investigating a hashing-based solution for audio-visual similarity modeling and apply it to the audio-visual sound source localization problem. We show that synchronized signals in audio and visual modalities demonstrate similar temporal changing patterns in certain feature spaces. We propose to use a permutation-based random hashing technique to capture the temporal order dynamics of audio and visual features by hashing them along the temporal axis into a common Hamming space. In this way, the audio-visual correlation problem is transformed into a similarity search problem in the Hamming space. Our hashing-based audio-visual similarity modeling has shown superior performances in the localization and segmentation of sounding objects in videos. The success of the permutation-based hashing method motivates us to generalize and formally define the supervised ranking-based hashing problem, and study its application to large-scale image retrieval. Specifically, we propose an effective supervised learning procedure to learn optimized ranking-based hash functions that can be used for large-scale similarity search. Compared with the randomized version, the optimized ranking-based hash codes are much more compact and discriminative. Moreover, it can be easily extended to kernel space to discover more complex ranking structures that cannot be revealed in linear subspaces. Experiments on large image datasets demonstrate the effectiveness of the proposed method for image retrieval. We further studied the ranking-based hashing method for the cross-media similarity search problem. Specifically, we propose two optimization methods to jointly learn two groups of linear subspaces, one for each media type, so that features\u27 ranking orders in different linear subspaces maximally preserve the cross-media similarities. Additionally, we develop this ranking-based hashing method in the cross-media context into a flexible hashing framework with a more general solution. We have demonstrated through extensive experiments on several real-world datasets that the proposed cross-media hashing method can achieve superior cross-media retrieval performances against several state-of-the-art algorithms. Lastly, to make better use of the supervisory label information, as well as to further improve the efficiency and accuracy of supervised hashing, we propose a novel multimedia discrete hashing framework that optimizes an instance-wise loss objective, as compared to the pairwise losses, using an efficient discrete optimization method. In addition, the proposed method decouples the binary codes learning and hash function learning into two separate stages, thus making the proposed method equally applicable for both single-media and cross-media search. Extensive experiments on both single-media and cross-media retrieval tasks demonstrate the effectiveness of the proposed method
    • …
    corecore