13,747 research outputs found

    UNSUPERVISED CONVOLUTIONAL NEURAL NETWORKS FOR MOTION ESTIMATION

    Get PDF
    We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Tesla K40 GPU used for this research.We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Tesla K40 GPU used for this research.We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Tesla K40 GPU used for this research.Traditional methods for motion estimation estimate the motion field F between a pair of images as the one that minimizes a predesigned cost function. In this paper, we propose a direct method and train a Convolutional Neural Network (CNN) that when, at test time, is given a pair of images as input it produces a dense motion field F at its output layer. In the absence of large datasets with ground truth motion that would allow classical supervised training, we propose to train the network in an unsupervised manner. The proposed cost function that is optimized during training, is based on the classical optical flow constraint. The latter is differentiable with respect to the motion field and, therefore, allows backpropagation of the error to previous layers of the network. Our method is tested on both synthetic and real image sequences and performs similarly to the state-of-the-art methods

    Unsupervised Learning of Depth and Ego-Motion from Cylindrical Panoramic Video

    Full text link
    We introduce a convolutional neural network model for unsupervised learning of depth and ego-motion from cylindrical panoramic video. Panoramic depth estimation is an important technology for applications such as virtual reality, 3D modeling, and autonomous robotic navigation. In contrast to previous approaches for applying convolutional neural networks to panoramic imagery, we use the cylindrical panoramic projection which allows for the use of the traditional CNN layers such as convolutional filters and max pooling without modification. Our evaluation of synthetic and real data shows that unsupervised learning of depth and ego-motion on cylindrical panoramic images can produce high-quality depth maps and that an increased field-of-view improves ego-motion estimation accuracy. We also introduce Headcam, a novel dataset of panoramic video collected from a helmet-mounted camera while biking in an urban setting.Comment: Accepted to IEEE AIVR 201

    GANVO: Unsupervised Deep Monocular Visual Odometry and Depth Estimation with Generative Adversarial Networks

    Full text link
    In the last decade, supervised deep learning approaches have been extensively employed in visual odometry (VO) applications, which is not feasible in environments where labelled data is not abundant. On the other hand, unsupervised deep learning approaches for localization and mapping in unknown environments from unlabelled data have received comparatively less attention in VO research. In this study, we propose a generative unsupervised learning framework that predicts 6-DoF pose camera motion and monocular depth map of the scene from unlabelled RGB image sequences, using deep convolutional Generative Adversarial Networks (GANs). We create a supervisory signal by warping view sequences and assigning the re-projection minimization to the objective loss function that is adopted in multi-view pose estimation and single-view depth generation network. Detailed quantitative and qualitative evaluations of the proposed framework on the KITTI and Cityscapes datasets show that the proposed method outperforms both existing traditional and unsupervised deep VO methods providing better results for both pose estimation and depth recovery.Comment: ICRA 2019 - accepte

    Competitive Collaboration: Joint Unsupervised Learning of Depth, Camera Motion, Optical Flow and Motion Segmentation

    Full text link
    We address the unsupervised learning of several interconnected problems in low-level vision: single view depth prediction, camera motion estimation, optical flow, and segmentation of a video into the static scene and moving regions. Our key insight is that these four fundamental vision problems are coupled through geometric constraints. Consequently, learning to solve them together simplifies the problem because the solutions can reinforce each other. We go beyond previous work by exploiting geometry more explicitly and segmenting the scene into static and moving regions. To that end, we introduce Competitive Collaboration, a framework that facilitates the coordinated training of multiple specialized neural networks to solve complex problems. Competitive Collaboration works much like expectation-maximization, but with neural networks that act as both competitors to explain pixels that correspond to static or moving regions, and as collaborators through a moderator that assigns pixels to be either static or independently moving. Our novel method integrates all these problems in a common framework and simultaneously reasons about the segmentation of the scene into moving objects and the static background, the camera motion, depth of the static scene structure, and the optical flow of moving objects. Our model is trained without any supervision and achieves state-of-the-art performance among joint unsupervised methods on all sub-problems.Comment: CVPR 201
    • …
    corecore