3,032 research outputs found

    BlogForever D2.6: Data Extraction Methodology

    Get PDF
    This report outlines an inquiry into the area of web data extraction, conducted within the context of blog preservation. The report reviews theoretical advances and practical developments for implementing data extraction. The inquiry is extended through an experiment that demonstrates the effectiveness and feasibility of implementing some of the suggested approaches. More specifically, the report discusses an approach based on unsupervised machine learning that employs the RSS feeds and HTML representations of blogs. It outlines the possibilities of extracting semantics available in blogs and demonstrates the benefits of exploiting available standards such as microformats and microdata. The report proceeds to propose a methodology for extracting and processing blog data to further inform the design and development of the BlogForever platform

    ์†Œ์…œ ๋„คํŠธ์›Œํฌ์™€ ์ด์ปค๋จธ์Šค ํ”Œ๋žซํผ์—์„œ์˜ ์ž ์žฌ ๋„คํŠธ์›Œํฌ ๋งˆ์ด๋‹

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2023. 2. ๊ถŒํƒœ๊ฒฝ.์›น ๊ธฐ๋ฐ˜ ์„œ๋น„์Šค์˜ ํญ๋ฐœ์ ์ธ ๋ฐœ๋‹ฌ๋กœ ์‚ฌ์šฉ์ž๋“ค์€ ์˜จ๋ผ์ธ ์ƒ์—์„œ ํญ๋„“๊ฒŒ ์—ฐ๊ฒฐ๋˜๊ณ  ์žˆ๋‹ค. ์˜จ๋ผ์ธ ํ”Œ๋žซํผ ์ƒ์—์„œ, ์‚ฌ์šฉ์ž๋“ค์€ ์„œ๋กœ์—๊ฒŒ ์˜ํ–ฅ์„ ์ฃผ๊ณ ๋ฐ›์œผ๋ฉฐ ์˜์‚ฌ ๊ฒฐ์ •์— ๊ทธ๋“ค์˜ ๊ฒฝํ—˜๊ณผ ์˜๊ฒฌ์„ ๋ฐ˜์˜ํ•˜๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์ธ๋‹ค. ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” ๋Œ€ํ‘œ์ ์ธ ์˜จ๋ผ์ธ ํ”Œ๋žซํผ์ธ ์†Œ์…œ ๋„คํŠธ์›Œํฌ ์„œ๋น„์Šค์™€ ์ด์ปค๋จธ์Šค ํ”Œ๋žซํผ์—์„œ์˜ ์‚ฌ์šฉ์ž ํ–‰๋™์— ๋Œ€ํ•ด ์—ฐ๊ตฌํ•˜์˜€๋‹ค. ์˜จ๋ผ์ธ ํ”Œ๋žซํผ์—์„œ์˜ ์‚ฌ์šฉ์ž ํ–‰๋™์€ ์‚ฌ์šฉ์ž์™€ ํ”Œ๋žซํผ ๊ตฌ์„ฑ ์š”์†Œ ๊ฐ„์˜ ๊ด€๊ณ„๋กœ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋‹ค. ์‚ฌ์šฉ์ž์˜ ๊ตฌ๋งค๋Š” ์‚ฌ์šฉ์ž์™€ ์ƒํ’ˆ ๊ฐ„์˜ ๊ด€๊ณ„๋กœ, ์‚ฌ์šฉ์ž์˜ ์ฒดํฌ์ธ์€ ์‚ฌ์šฉ์ž์™€ ์žฅ์†Œ ๊ฐ„์˜ ๊ด€๊ณ„๋กœ ๋‚˜ํƒ€๋‚ด์ง„๋‹ค. ์—ฌ๊ธฐ์— ํ–‰๋™์˜ ์‹œ๊ฐ„๊ณผ ๋ ˆ์ดํŒ…, ํƒœ๊ทธ ๋“ฑ์˜ ์ •๋ณด๊ฐ€ ํฌํ•จ๋  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋‘ ํ”Œ๋žซํผ์—์„œ ์ •์˜๋œ ์‚ฌ์šฉ์ž์˜ ํ–‰๋™ ๊ทธ๋ž˜ํ”„์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์ž ์žฌ ๋„คํŠธ์›Œํฌ๋ฅผ ํŒŒ์•…ํ•˜๋Š” ์—ฐ๊ตฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ์œ„์น˜ ๊ธฐ๋ฐ˜์˜ ์†Œ์…œ ๋„คํŠธ์›Œํฌ ์„œ๋น„์Šค์˜ ๊ฒฝ์šฐ ํŠน์ • ์žฅ์†Œ์— ๋ฐฉ๋ฌธํ•˜๋Š” ์ฒดํฌ์ธ ํ˜•์‹์œผ๋กœ ๋งŽ์€ ํฌ์ŠคํŠธ๊ฐ€ ๋งŒ๋“ค์–ด์ง€๋Š”๋ฐ, ์‚ฌ์šฉ์ž์˜ ์žฅ์†Œ ๋ฐฉ๋ฌธ์€ ์‚ฌ์šฉ์ž ๊ฐ„์— ์‚ฌ์ „์— ์กด์žฌํ•˜๋Š” ์นœ๊ตฌ ๊ด€๊ณ„์— ์˜ํ•ด ์˜ํ–ฅ์„ ํฌ๊ฒŒ ๋ฐ›๋Š”๋‹ค. ์‚ฌ์šฉ์ž ํ™œ๋™ ๋„คํŠธ์›Œํฌ์˜ ์ €๋ณ€์— ์ž ์žฌ๋œ ์‚ฌ์šฉ์ž ๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ํŒŒ์•…ํ•˜๋Š” ๊ฒƒ์€ ํ™œ๋™ ์˜ˆ์ธก์— ๋„์›€์ด ๋  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ด๋ฅผ ์œ„ํ•ด ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋น„์ง€๋„ํ•™์Šต ๊ธฐ๋ฐ˜์œผ๋กœ ํ™œ๋™ ๋„คํŠธ์›Œํฌ๋กœ๋ถ€ํ„ฐ ์‚ฌ์šฉ์ž ๊ฐ„ ์‚ฌํšŒ์  ๊ด€๊ณ„๋ฅผ ์ถ”์ถœํ•˜๋Š” ์—ฐ๊ตฌ๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ๊ธฐ์กด์— ์—ฐ๊ตฌ๋˜์—ˆ๋˜ ๋ฐฉ๋ฒ•๋“ค์€ ๋‘ ์‚ฌ์šฉ์ž๊ฐ€ ๋™์‹œ์— ๋ฐฉ๋ฌธํ•˜๋Š” ํ–‰์œ„์ธ co-visitation์„ ์ค‘์ ์ ์œผ๋กœ ๊ณ ๋ คํ•˜์—ฌ ์‚ฌ์šฉ์ž ๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ์˜ˆ์ธกํ•˜๊ฑฐ๋‚˜, ๋„คํŠธ์›Œํฌ ์ž„๋ฒ ๋”ฉ ๋˜๋Š” ๊ทธ๋ž˜ํ”„ ์‹ ๊ฒฝ๋ง(GNN)์„ ์‚ฌ์šฉํ•˜์—ฌ ํ‘œํ˜„ ํ•™์Šต์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ์ ‘๊ทผ ๋ฐฉ์‹์€ ์ฃผ๊ธฐ์ ์ธ ๋ฐฉ๋ฌธ์ด๋‚˜ ์žฅ๊ฑฐ๋ฆฌ ์ด๋™ ๋“ฑ์œผ๋กœ ๋Œ€ํ‘œ๋˜๋Š” ์‚ฌ์šฉ์ž์˜ ํ–‰๋™ ํŒจํ„ด์„ ์ž˜ ํฌ์ฐฉํ•˜์ง€ ๋ชปํ•œ๋‹ค. ํ–‰๋™ ํŒจํ„ด์„ ๋” ์ž˜ ํ•™์Šตํ•˜๊ธฐ ์œ„ํ•ด, ANES๋Š” ์‚ฌ์šฉ์ž ์ปจํ…์ŠคํŠธ ๋‚ด์—์„œ ์‚ฌ์šฉ์ž์™€ ๊ด€์‹ฌ ์ง€์ (POI) ๊ฐ„์˜ ์ธก๋ฉด(Aspect) ์ง€ํ–ฅ ๊ด€๊ณ„๋ฅผ ํ•™์Šตํ•œ๋‹ค. ANES๋Š” User-POI ์ด๋ถ„ ๊ทธ๋ž˜ํ”„์˜ ๊ตฌ์กฐ์—์„œ ์‚ฌ์šฉ์ž์˜ ํ–‰๋™์„ ์—ฌ๋Ÿฌ ๊ฐœ์˜ ์ธก๋ฉด์œผ๋กœ ๋‚˜๋ˆ„๊ณ , ๊ฐ๊ฐ์˜ ๊ด€๊ณ„๋ฅผ ๊ณ ๋ คํ•˜์—ฌ ํ–‰๋™ ํŒจํ„ด์„ ์ถ”์ถœํ•˜๋Š” ์ตœ์ดˆ์˜ ๋น„์ง€๋„ํ•™์Šต ๊ธฐ๋ฐ˜ ์ ‘๊ทผ ๋ฐฉ์‹์ด๋‹ค. ์‹ค์ œ LBSN ๋ฐ์ดํ„ฐ์—์„œ ์ˆ˜ํ–‰๋œ ๊ด‘๋ฒ”์œ„ํ•œ ์‹คํ—˜์—์„œ, ANES๋Š” ๊ธฐ์กด์— ์ œ์•ˆ๋˜์—ˆ๋˜ ๊ธฐ๋ฒ•๋“ค๋ณด๋‹ค ๋†’์€ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ค€๋‹ค. ์œ„์น˜ ๊ธฐ๋ฐ˜ ์†Œ์…œ ๋„คํŠธ์›Œํฌ์™€๋Š” ๋‹ค๋ฅด๊ฒŒ, ์ด์ปค๋จธ์Šค์˜ ๋ฆฌ๋ทฐ ์‹œ์Šคํ…œ์—์„œ๋Š” ์‚ฌ์šฉ์ž๋“ค์ด ๋Šฅ๋™์ ์ธ ํŒ”๋กœ์šฐ/ํŒ”๋กœ์ž‰ ๋“ฑ์˜ ํ–‰์œ„๋ฅผ ์ˆ˜ํ–‰ํ•˜์ง€ ์•Š๊ณ ๋„ ํ”Œ๋žซํผ์— ์˜ํ•ด ์„œ๋กœ์˜ ์ •๋ณด๋ฅผ ์ฃผ๊ณ ๋ฐ›๊ณ  ์˜ํ–ฅ๋ ฅ์„ ํ–‰์‚ฌํ•˜๊ฒŒ ๋œ๋‹ค. ์ด์™€ ๊ฐ™์€ ์‚ฌ์šฉ์ž๋“ค์˜ ํ–‰๋™ ํŠน์„ฑ์€ ๋ฆฌ๋ทฐ ์ŠคํŒธ์— ์˜ํ•ด ์‰ฝ๊ฒŒ ์•…์šฉ๋  ์ˆ˜ ์žˆ๋‹ค. ๋ฆฌ๋ทฐ ์ŠคํŒธ์€ ์‹ค์ œ ์‚ฌ์šฉ์ž์˜ ์˜๊ฒฌ์„ ์ˆจ๊ธฐ๊ณ  ํ‰์ ์„ ์กฐ์ž‘ํ•˜์—ฌ ์ž˜๋ชป๋œ ์ •๋ณด๋ฅผ ์ „๋‹ฌํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ์ด๋ฃจ์–ด์ง„๋‹ค. ๋‚˜๋Š” ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์‚ฌ์šฉ์ž ๋ฆฌ๋ทฐ ๋ฐ์ดํ„ฐ์—์„œ ์‚ฌ์šฉ์ž ๊ฐ„ ์‚ฌ์ „ ๊ณต๋ชจ์„ฑ(Collusiveness)์˜ ๊ฐ€๋Šฅ์„ฑ์„ ์ฐพ๊ณ , ์ด๋ฅผ ์ŠคํŒธ ํƒ์ง€์— ํ™œ์šฉํ•œ ๋ฐฉ๋ฒ•์ธ SC-Com์„ ์ œ์•ˆํ•œ๋‹ค. SC-Com์€ ํ–‰๋™์˜ ๊ณต๋ชจ์„ฑ์œผ๋กœ๋ถ€ํ„ฐ ์‚ฌ์šฉ์ž ๊ฐ„ ๊ณต๋ชจ ์ ์ˆ˜๋ฅผ ๊ณ„์‚ฐํ•˜๊ณ  ํ•ด๋‹น ์ ์ˆ˜๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ „์ฒด ์‚ฌ์šฉ์ž๋ฅผ ์œ ์‚ฌํ•œ ์‚ฌ์šฉ์ž๋“ค์˜ ์ปค๋ฎค๋‹ˆํ‹ฐ๋กœ ๋ถ„๋ฅ˜ํ•œ๋‹ค. ๊ทธ ํ›„ ์ŠคํŒธ ์œ ์ €์™€ ์ผ๋ฐ˜ ์œ ์ €๋ฅผ ๊ตฌ๋ณ„ํ•˜๋Š” ๋ฐ์— ์ค‘์š”ํ•œ ๊ทธ๋ž˜ํ”„ ๊ธฐ๋ฐ˜์˜ ํŠน์ง•์„ ์ถ”์ถœํ•˜์—ฌ ๊ฐ๋… ํ•™์Šต ๊ธฐ๋ฐ˜์˜ ๋ถ„๋ฅ˜๊ธฐ์˜ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๋กœ ํ™œ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. SC-Com์€ ๊ณต๋ชจ์„ฑ์„ ๊ฐ–๋Š” ์ŠคํŒธ ์œ ์ €์˜ ์ง‘ํ•ฉ์„ ํšจ๊ณผ์ ์œผ๋กœ ํƒ์ง€ํ•œ๋‹ค. ์‹ค์ œ ๋ฐ์ดํ„ฐ์…‹์„ ์ด์šฉํ•œ ์‹คํ—˜์—์„œ, SC-Com์€ ๊ธฐ์กด ๋…ผ๋ฌธ๋“ค ๋Œ€๋น„ ์ŠคํŒธ ํƒ์ง€์— ๋›ฐ์–ด๋‚œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ์œ„ ๋…ผ๋ฌธ์—์„œ ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด ์—ฐ๊ตฌ๋œ ์•”์‹œ์  ์—ฐ๊ฒฐ๋ง ํƒ์ง€ ๋ชจ๋ธ์€ ๋ ˆ์ด๋ธ”์ด ์—†๋Š” ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด์„œ๋„ ์‚ฌ์ „์— ์—ฐ๊ฒฐ๋˜์—ˆ์„ ๊ฐ€๋Šฅ์„ฑ์ด ๋†’์€ ์‚ฌ์šฉ์ž๋“ค์„ ์˜ˆ์ธกํ•˜๋ฏ€๋กœ, ์‹ค์‹œ๊ฐ„ ์œ„์น˜ ๋ฐ์ดํ„ฐ๋‚˜, ์•ฑ ์‚ฌ์šฉ ๋ฐ์ดํ„ฐ ๋“ฑ์˜ ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ์—์„œ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ์œ ์šฉํ•œ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜์—ฌ ๊ด‘๊ณ  ์ถ”์ฒœ ์‹œ์Šคํ…œ์ด๋‚˜, ์•…์„ฑ ์œ ์ € ํƒ์ง€ ๋“ฑ์˜ ๋ถ„์•ผ์—์„œ ๊ธฐ์—ฌํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€ํ•œ๋‹ค.Following the exploding usage on online services, people are connected with each other more broadly and widely. In online platforms, people influence each other, and have tendency to reflect their opinions in decision-making. Social Network Services (SNSs) and E-commerce are typical example of online platforms. User behaviors in online platforms can be defined as relation between user and platform components. A user's purchase is a relationship between a user and a product, and a user's check-in is a relationship between a user and a place. Here, information such as action time, rating, tag, etc. may be included. In many studies, platform user behavior is represented in graph form. At this time, the elements constituting the nodes of the graph are composed of objects such as users and products and places within the platform, and the interaction between the platform elements and the user can be expressed as two nodes being connected. In this study, I present studies to identify potential networks that affect the user's behavior graph defined on the two platforms. In ANES, I focus on representation learning for social link inference based on user trajectory data. While traditional methods predict relations between users by considering hand-crafted features, recent studies first perform representation learning using network/node embedding or graph neural networks (GNNs) for downstream tasks such as node classification and link prediction. However, those approaches fail to capture behavioral patterns of individuals ingrained in periodical visits or long-distance movements. To better learn behavioral patterns, this paper proposes a novel scheme called ANES (Aspect-oriented Network Embedding for Social link inference). ANES learns aspect-oriented relations between users and Point-of-Interests (POIs) within their contexts. ANES is the first approach that extracts the complex behavioral pattern of users from both trajectory data and the structure of User-POI bipartite graphs. Extensive experiments on several real-world datasets show that ANES outperforms state-of-the-art baselines. In contrast to active social networks, people are connected to other users regardless of their intentions in some platforms, such as online shopping websites and restaurant review sites. They do not have any information about each other in advance, and they only have a common point which is that they have visited or have planned to visit same place or purchase a product. Interestingly, users have tendency to be influenced by the review data on their purchase intentions. Unfortunately, this instinct is easily exploited by opinion spammers. In SC-Com, I focus on opinion spam detection in online shopping services. In many cases, my decision-making process is closely related to online reviews. However, there have been threats of opinion spams by hired reviewers increasingly, which aim to mislead potential customers by hiding genuine consumers opinions. Opinion spams should be filed up collectively to falsify true information. Fortunately, I propose the way to spot the possibility to detect them from their collusiveness. In this paper, I propose SC-Com, an optimized collusive community detection framework. It constructs the graph of reviewers from the collusiveness of behavior and divides a graph by communities based on their mutual suspiciousness. After that, I extract community-based and temporal abnormality features which are critical to discriminate spammers from other genuine users. I show that my method detects collusive opinion spam reviewers effectively and precisely from their collective behavioral patterns. In the real-world dataset, my approach showed prominent performance while only considering primary data such as time and ratings. These implicit network inference models studied on various data in this thesis predicts users who are likely to be pre-connected to unlabeled data, so it is expected to contribute to areas such as advertising recommendation systems and malicious user detection by providing useful information.Chapter 1 Introduction 1 Chapter 2 Social link Inference in Location-based check-in data 5 2.1 Background 5 2.2 Related Work 12 2.3 Location-based Social Network Service Data 15 2.4 Aspect-wise Graph Decomposition 18 2.5 Aspect-wise Graph learning 19 2.6 Inferring Social Relation from User Representation 21 2.7 Performance Analysis 23 2.8 Discussion and Implications 26 2.9 Summary 34 Chapter 3 Detecting collusiveness from reviews in Online platforms and its application 35 3.1 Background 35 3.2 Related Work 39 3.3 Online Review Data 43 3.4 Collusive Graph Projection 44 3.5 Reviewer Community Detection 47 3.6 Review Community feature extraction and spammer detection 51 3.7 Performance Analysis 53 3.8 Discussion and Implications 55 3.9 Summary 62 Chapter 4 Conclusion 63๋ฐ•

    Histopathological image analysis : a review

    Get PDF
    Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe

    Text-based Sentiment Analysis and Music Emotion Recognition

    Get PDF
    Nowadays, with the expansion of social media, large amounts of user-generated texts like tweets, blog posts or product reviews are shared online. Sentiment polarity analysis of such texts has become highly attractive and is utilized in recommender systems, market predictions, business intelligence and more. We also witness deep learning techniques becoming top performers on those types of tasks. There are however several problems that need to be solved for efficient use of deep neural networks on text mining and text polarity analysis. First of all, deep neural networks are data hungry. They need to be fed with datasets that are big in size, cleaned and preprocessed as well as properly labeled. Second, the modern natural language processing concept of word embeddings as a dense and distributed text feature representation solves sparsity and dimensionality problems of the traditional bag-of-words model. Still, there are various uncertainties regarding the use of word vectors: should they be generated from the same dataset that is used to train the model or it is better to source them from big and popular collections that work as generic text feature representations? Third, it is not easy for practitioners to find a simple and highly effective deep learning setup for various document lengths and types. Recurrent neural networks are weak with longer texts and optimal convolution-pooling combinations are not easily conceived. It is thus convenient to have generic neural network architectures that are effective and can adapt to various texts, encapsulating much of design complexity. This thesis addresses the above problems to provide methodological and practical insights for utilizing neural networks on sentiment analysis of texts and achieving state of the art results. Regarding the first problem, the effectiveness of various crowdsourcing alternatives is explored and two medium-sized and emotion-labeled song datasets are created utilizing social tags. One of the research interests of Telecom Italia was the exploration of relations between music emotional stimulation and driving style. Consequently, a context-aware music recommender system that aims to enhance driving comfort and safety was also designed. To address the second problem, a series of experiments with large text collections of various contents and domains were conducted. Word embeddings of different parameters were exercised and results revealed that their quality is influenced (mostly but not only) by the size of texts they were created from. When working with small text datasets, it is thus important to source word features from popular and generic word embedding collections. Regarding the third problem, a series of experiments involving convolutional and max-pooling neural layers were conducted. Various patterns relating text properties and network parameters with optimal classification accuracy were observed. Combining convolutions of words, bigrams, and trigrams with regional max-pooling layers in a couple of stacks produced the best results. The derived architecture achieves competitive performance on sentiment polarity analysis of movie, business and product reviews. Given that labeled data are becoming the bottleneck of the current deep learning systems, a future research direction could be the exploration of various data programming possibilities for constructing even bigger labeled datasets. Investigation of feature-level or decision-level ensemble techniques in the context of deep neural networks could also be fruitful. Different feature types do usually represent complementary characteristics of data. Combining word embedding and traditional text features or utilizing recurrent networks on document splits and then aggregating the predictions could further increase prediction accuracy of such models
    • โ€ฆ
    corecore