1,288 research outputs found

    Mapping Topographic Structure in White Matter Pathways with Level Set Trees

    Full text link
    Fiber tractography on diffusion imaging data offers rich potential for describing white matter pathways in the human brain, but characterizing the spatial organization in these large and complex data sets remains a challenge. We show that level set trees---which provide a concise representation of the hierarchical mode structure of probability density functions---offer a statistically-principled framework for visualizing and analyzing topography in fiber streamlines. Using diffusion spectrum imaging data collected on neurologically healthy controls (N=30), we mapped white matter pathways from the cortex into the striatum using a deterministic tractography algorithm that estimates fiber bundles as dimensionless streamlines. Level set trees were used for interactive exploration of patterns in the endpoint distributions of the mapped fiber tracks and an efficient segmentation of the tracks that has empirical accuracy comparable to standard nonparametric clustering methods. We show that level set trees can also be generalized to model pseudo-density functions in order to analyze a broader array of data types, including entire fiber streamlines. Finally, resampling methods show the reliability of the level set tree as a descriptive measure of topographic structure, illustrating its potential as a statistical descriptor in brain imaging analysis. These results highlight the broad applicability of level set trees for visualizing and analyzing high-dimensional data like fiber tractography output

    Population-wise consistent segmentation of diffusion weighted magnetic resonance images

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 161-167).In this thesis, we investigate unsupervised and semi-supervised methods to construct anatomical atlases and segment medical images. We propose an integrated registration and clustering algorithm to compute an anatomical atlas of fiber-bundles as well as deep gray matter structures from a population of diffusion tensor MR images (DT-MRI). We refer to this algorithm as "Consistency Clustering" since the outputs of the algorithm include population-wise consistent segmentations and correspondence between the subjects. The consistency is ensured through using a single anatomical model for the whole population, which is similar to the atlases used by experts for manual labeling. We experiment with both parametric and non-parametric models for the gray matter and white matter segmentation problems, each model resulting in a different kind of atlas. Consistent population-wise segmentations require development of several integrated algorithms for clustering, registration, atlas-building and outlier rejection. In this thesis we develop, implement and evaluate these tools individually and together as a population-wise segmentation tool. Together, Consistency Clustering enables automatic atlas construction in DT-MRI for a population, either normal or affected by a neural disorder. Consistency Clustering also provides the user the choice to include prior knowledge through a few labeled subjects (semi-supervised) or compute an anatomical atlas in a completely data driven manner (unsupervised). Furthermore, resulting anatomical models are compact representations of populations and can be used for population-wise morphometry. We implement and evaluate these methods using in vivo DT-MRI datasets. We investigate the benefits of population-wise segmentation as opposed to individually segmenting subjects, as well as effects of noise and initialization on the segmentations.by Ulas Ziyan.Ph.D

    Vessel tractography using an intensity based tensor model with branch detection

    Get PDF
    In this paper, we present a tubular structure seg- mentation method that utilizes a second order tensor constructed from directional intensity measurements, which is inspired from diffusion tensor image (DTI) modeling. The constructed anisotropic tensor which is fit inside a vessel drives the segmen- tation analogously to a tractography approach in DTI. Our model is initialized at a single seed point and is capable of capturing whole vessel trees by an automatic branch detection algorithm developed in the same framework. The centerline of the vessel as well as its thickness is extracted. Performance results within the Rotterdam Coronary Artery Algorithm Evaluation framework are provided for comparison with existing techniques. 96.4% average overlap with ground truth delineated by experts is obtained in addition to other measures reported in the paper. Moreover, we demonstrate further quantitative results over synthetic vascular datasets, and we provide quantitative experiments for branch detection on patient Computed Tomography Angiography (CTA) volumes, as well as qualitative evaluations on the same CTA datasets, from visual scores by a cardiologist expert

    Enhancement Techniques and Methods for Brain MRI Imaging

    Get PDF
    In this paper, it is planned to review and compare the different methods of enhancing a DICOM of brain MRIused in preprocessing and segmentation techniques. Image segmentation is the process of partitioning an image into multiple segments, so as to change the representation of an image into something that is more meaningful and easier to analyze. Several general-purpose algorithms and techniques have been developed for image segmentation. This paper describes the different segmentation techniques used in the field of ultrasound, MR image and SAR Image Processing. In preprocessing and enhancement stage is used to eliminate the noise and high frequency components from DICOM image. In this paper, various Preprocessing and Enhancement Technique, Segmentation Algorithm and their compared

    MODELING AND QUANTITATIVE ANALYSIS OF WHITE MATTER FIBER TRACTS IN DIFFUSION TENSOR IMAGING

    Get PDF
    Diffusion tensor imaging (DTI) is a structural magnetic resonance imaging (MRI) technique to record incoherent motion of water molecules and has been used to detect micro structural white matter alterations in clinical studies to explore certain brain disorders. A variety of DTI based techniques for detecting brain disorders and facilitating clinical group analysis have been developed in the past few years. However, there are two crucial issues that have great impacts on the performance of those algorithms. One is that brain neural pathways appear in complicated 3D structures which are inappropriate and inaccurate to be approximated by simple 2D structures, while the other involves the computational efficiency in classifying white matter tracts. The first key area that this dissertation focuses on is to implement a novel computing scheme for estimating regional white matter alterations along neural pathways in 3D space. The mechanism of the proposed method relies on white matter tractography and geodesic distance mapping. We propose a mask scheme to overcome the difficulty to reconstruct thin tract bundles. Real DTI data are employed to demonstrate the performance of the pro- posed technique. Experimental results show that the proposed method bears great potential to provide a sensitive approach for determining the white matter integrity in human brain. Another core objective of this work is to develop a class of new modeling and clustering techniques with improved performance and noise resistance for separating reconstructed white matter tracts to facilitate clinical group analysis. Different strategies are presented to handle different scenarios. For whole brain tractography reconstructed white matter tracts, a Fourier descriptor model and a clustering algorithm based on multivariate Gaussian mixture model and expectation maximization are proposed. Outliers are easily handled in this framework. Real DTI data experimental results show that the proposed algorithm is relatively effective and may offer an alternative for existing white matter fiber clustering methods. For a small amount of white matter fibers, a modeling and clustering algorithm with the capability of handling white matter fibers with unequal length and sharing no common starting region is also proposed and evaluated with real DTI data

    Generalised coherent point drift for group-wise multi-dimensional analysis of diffusion brain MRI data

    Get PDF
    A probabilistic framework for registering generalised point sets comprising multiple voxel-wise data features such as positions, orientations and scalar-valued quantities, is proposed. It is employed for the analysis of magnetic resonance diffusion tensor image (DTI)-derived quantities, such as fractional anisotropy (FA) and fibre orientation, across multiple subjects. A hybrid Student’s t-Watson-Gaussian mixture model-based non-rigid registration framework is formulated for the joint registration and clustering of voxel-wise DTI-derived data, acquired from multiple subjects. The proposed approach jointly estimates the non-rigid transformations necessary to register an unbiased mean template (represented as a 7-dimensional hybrid point set comprising spatial positions, fibre orientations and FA values) to white matter regions of interest (ROIs), and approximates the joint distribution of voxel spatial positions, their associated principal diffusion axes, and FA. Specific white matter ROIs, namely, the corpus callosum and cingulum, are analysed across healthy control (HC) subjects (K = 20 samples) and patients diagnosed with mild cognitive impairment (MCI) (K = 20 samples) or Alzheimer’s disease (AD) (K = 20 samples) using the proposed framework, facilitating inter-group comparisons of FA and fibre orientations. Group-wise analyses of the latter is not afforded by conventional approaches such as tract-based spatial statistics (TBSS) and voxel-based morphometry (VBM)
    corecore