486 research outputs found

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    AIDPS:Adaptive Intrusion Detection and Prevention System for Underwater Acoustic Sensor Networks

    Full text link
    Underwater Acoustic Sensor Networks (UW-ASNs) are predominantly used for underwater environments and find applications in many areas. However, a lack of security considerations, the unstable and challenging nature of the underwater environment, and the resource-constrained nature of the sensor nodes used for UW-ASNs (which makes them incapable of adopting security primitives) make the UW-ASN prone to vulnerabilities. This paper proposes an Adaptive decentralised Intrusion Detection and Prevention System called AIDPS for UW-ASNs. The proposed AIDPS can improve the security of the UW-ASNs so that they can efficiently detect underwater-related attacks (e.g., blackhole, grayhole and flooding attacks). To determine the most effective configuration of the proposed construction, we conduct a number of experiments using several state-of-the-art machine learning algorithms (e.g., Adaptive Random Forest (ARF), light gradient-boosting machine, and K-nearest neighbours) and concept drift detection algorithms (e.g., ADWIN, kdqTree, and Page-Hinkley). Our experimental results show that incremental ARF using ADWIN provides optimal performance when implemented with One-class support vector machine (SVM) anomaly-based detectors. Furthermore, our extensive evaluation results also show that the proposed scheme outperforms state-of-the-art bench-marking methods while providing a wider range of desirable features such as scalability and complexity

    Networks, Communication, and Computing Vol. 2

    Get PDF
    Networks, communications, and computing have become ubiquitous and inseparable parts of everyday life. This book is based on a Special Issue of the Algorithms journal, and it is devoted to the exploration of the many-faceted relationship of networks, communications, and computing. The included papers explore the current state-of-the-art research in these areas, with a particular interest in the interactions among the fields

    Proposal of a health care network based on big data analytics for PDs

    Get PDF
    Health care networks for Parkinson's disease (PD) already exist and have been already proposed in the literature, but most of them are not able to analyse the vast volume of data generated from medical examinations and collected and organised in a pre-defined manner. In this work, the authors propose a novel health care network based on big data analytics for PD. The main goal of the proposed architecture is to support clinicians in the objective assessment of the typical PD motor issues and alterations. The proposed health care network has the ability to retrieve a vast volume of acquired heterogeneous data from a Data warehouse and train an ensemble SVM to classify and rate the motor severity of a PD patient. Once the network is trained, it will be able to analyse the data collected during motor examinations of a PD patient and generate a diagnostic report on the basis of the previously acquired knowledge. Such a diagnostic report represents a tool both to monitor the follow up of the disease for each patient and give robust advice about the severity of the disease to clinicians

    Streaming Scene Maps for Co-Robotic Exploration in Bandwidth Limited Environments

    Full text link
    This paper proposes a bandwidth tunable technique for real-time probabilistic scene modeling and mapping to enable co-robotic exploration in communication constrained environments such as the deep sea. The parameters of the system enable the user to characterize the scene complexity represented by the map, which in turn determines the bandwidth requirements. The approach is demonstrated using an underwater robot that learns an unsupervised scene model of the environment and then uses this scene model to communicate the spatial distribution of various high-level semantic scene constructs to a human operator. Preliminary experiments in an artificially constructed tank environment as well as simulated missions over a 10m×\times10m coral reef using real data show the tunability of the maps to different bandwidth constraints and science interests. To our knowledge this is the first paper to quantify how the free parameters of the unsupervised scene model impact both the scientific utility of and bandwidth required to communicate the resulting scene model.Comment: 8 pages, 6 figures, accepted for presentation in IEEE Int. Conf. on Robotics and Automation, ICRA '19, Montreal, Canada, May 201

    Multiple Surface Pipeline Leak Detection Using Real-Time Sensor Data Analysis

    Get PDF
    Pipelines enable the largest volume of both intra and international transportation of oil and gas and play critical roles in the energy sufficiency of countries. The biggest drawback with the use of pipelines for oil and gas transportation is the problem of oil spills whenever the pipelines lose containment. The severity of the oil spill on the environment is a function of the volume of the spill and this is a function of the time taken to detect the leak and contain the spill from the pipeline. A single leak on the Enbridge pipeline spilled 3.3 million liters into the Kalamazoo river while a pipeline rupture in North Dakota which went undetected for 143 days spilled 29 million gallons into the environment.Several leak detection systems (LDS) have been developed with the capacity for rapid detection and localization of pipeline leaks, but the characteristics of these LDS limit their leak detection capability. Machine learning provides an opportunity to develop faster LDS, but it requires access to pipeline leak datasets that are proprietary in nature and not readily available. Current LDS have difficulty in detecting low-volume/low-pressure spills located far away from the inlet and outlet pressure sensors. Some reasons for this include the following, leak induced pressure variation generated by these leaks is dissipated before it gets to the inlet and outlet pressure sensors, another reason is that the LDS are designed for specific minimum detection levels which is a percentage of the flow volume of the pipeline, so when the leak falls below the LDS minimum detection value, the leak will not be detected. Perturbations generated by small volume leaks are often within the threshold values of the pipeline\u27s normal operational envelop as such the LDS disregards these perturbations. These challenges have been responsible for pipeline leaks going on for weeks only to be detected by third-party persons in the vicinity of the leaks. This research has been able to develop a framework for the generation of pipeline datasets using the PIPESIM software and the RAND function in Python. The topological data of the pipeline right of way, the pipeline network design specification, and the fluid flow properties are the required information for this framework. With this information, leaks can be simulated at any point on the pipeline and the datasets generated. This framework will facilitate the generation of the One-class dataset for the pipeline which can be used for the development of LDS using machine learning. The research also developed a leak detection topology for detecting low-volume leaks. This topology comprises of the installation of a pressure sensor with remote data transmission capacity at the midpoint of the line. The sensor utilizes the exception-based transmission scheme where it only transmits when the new data differs from the existing data value. This will extend the battery life of the sensor. The installation of the sensor at the midpoint of the line was found to increase the sensitivity of the LDS to leak-induced pressure variations which were traditionally dissipated before getting to the Inlet/outlet sensors. The research also proposed the development of a Leak Detection as a Service (LDaaS) platform where the pressure data from the inlet and the midpoint sensors are collated and subjected to a specially developed leak detection algorithm for the detection of pipeline leaks. This leak detection topology will enable operators to detect low-volume/low-pressure leaks that would have been missed by the existing leak detection system and deploy the oil spill response plans quicker thus reducing the volume of oil spilled into the environment. It will also provide a platform for regulators to monitor the leak alerts as they are generated and enable them to evaluate the oil spill response plans of the operators

    IoT Anomaly Detection Methods and Applications: A Survey

    Full text link
    Ongoing research on anomaly detection for the Internet of Things (IoT) is a rapidly expanding field. This growth necessitates an examination of application trends and current gaps. The vast majority of those publications are in areas such as network and infrastructure security, sensor monitoring, smart home, and smart city applications and are extending into even more sectors. Recent advancements in the field have increased the necessity to study the many IoT anomaly detection applications. This paper begins with a summary of the detection methods and applications, accompanied by a discussion of the categorization of IoT anomaly detection algorithms. We then discuss the current publications to identify distinct application domains, examining papers chosen based on our search criteria. The survey considers 64 papers among recent publications published between January 2019 and July 2021. In recent publications, we observed a shortage of IoT anomaly detection methodologies, for example, when dealing with the integration of systems with various sensors, data and concept drifts, and data augmentation where there is a shortage of Ground Truth data. Finally, we discuss the present such challenges and offer new perspectives where further research is required.Comment: 22 page

    Internet of Underwater Things and Big Marine Data Analytics -- A Comprehensive Survey

    Full text link
    The Internet of Underwater Things (IoUT) is an emerging communication ecosystem developed for connecting underwater objects in maritime and underwater environments. The IoUT technology is intricately linked with intelligent boats and ships, smart shores and oceans, automatic marine transportations, positioning and navigation, underwater exploration, disaster prediction and prevention, as well as with intelligent monitoring and security. The IoUT has an influence at various scales ranging from a small scientific observatory, to a midsized harbor, and to covering global oceanic trade. The network architecture of IoUT is intrinsically heterogeneous and should be sufficiently resilient to operate in harsh environments. This creates major challenges in terms of underwater communications, whilst relying on limited energy resources. Additionally, the volume, velocity, and variety of data produced by sensors, hydrophones, and cameras in IoUT is enormous, giving rise to the concept of Big Marine Data (BMD), which has its own processing challenges. Hence, conventional data processing techniques will falter, and bespoke Machine Learning (ML) solutions have to be employed for automatically learning the specific BMD behavior and features facilitating knowledge extraction and decision support. The motivation of this paper is to comprehensively survey the IoUT, BMD, and their synthesis. It also aims for exploring the nexus of BMD with ML. We set out from underwater data collection and then discuss the family of IoUT data communication techniques with an emphasis on the state-of-the-art research challenges. We then review the suite of ML solutions suitable for BMD handling and analytics. We treat the subject deductively from an educational perspective, critically appraising the material surveyed.Comment: 54 pages, 11 figures, 19 tables, IEEE Communications Surveys & Tutorials, peer-reviewed academic journa
    • …
    corecore