400 research outputs found

    Network automation: challenges, enablers, and benefits

    Get PDF
    Communication infrastructures are evolving towards an ad-hoc service provisioning scenario where programmability and flexibility are fundamental concepts. Network automation is expected to play a vital role in streamlining all aspects of the service provisioning process (i.e., deployment, maintenance, and tear down). However, to fully realize this autonomous operation vision, closed-loop automation procedures need to be developed.This tutorial will present the main motivations and challenges behind designing and operating closed-loop autonomous decision-making processes, including a brief overview of current standardization initiatives. The tutorial will then address several use cases showcasing how network automation can alleviate the complexity of the service provisioning processes and the benefits brought in by the introduction of network automation

    CPS Data Streams Analytics based on Machine Learning for Cloud and Fog Computing: A Survey

    Get PDF
    Cloud and Fog computing has emerged as a promising paradigm for the Internet of things (IoT) and cyber-physical systems (CPS). One characteristic of CPS is the reciprocal feedback loops between physical processes and cyber elements (computation, software and networking), which implies that data stream analytics is one of the core components of CPS. The reasons for this are: (i) it extracts the insights and the knowledge from the data streams generated by various sensors and other monitoring components embedded in the physical systems; (ii) it supports informed decision making; (iii) it enables feedback from the physical processes to the cyber counterparts; (iv) it eventually facilitates the integration of cyber and physical systems. There have been many successful applications of data streams analytics, powered by machine learning techniques, to CPS systems. Thus, it is necessary to have a survey on the particularities of the application of machine learning techniques to the CPS domain. In particular, we explore how machine learning methods should be deployed and integrated in cloud and fog architectures for better fulfilment of the requirements, e.g. mission criticality and time criticality, arising in CPS domains. To the best of our knowledge, this paper is the first to systematically study machine learning techniques for CPS data stream analytics from various perspectives, especially from a perspective that leads to the discussion and guidance of how the CPS machine learning methods should be deployed in a cloud and fog architecture

    Federated learning for distributed intrusion detection systems in public networks

    Get PDF
    Abstract. The rapid integration of technologies such as IoT devices, cloud, and edge computing has led to a progressively interconnected network of intelligent environments, services, and public infrastructures. This evolution highlights the critical need for sophisticated and self-governing Intrusion Detection Systems (IDS) to enhance trust and ensure the security and integrity of these interconnected environments. Furthermore, the advancement of AI-based Intrusion Detection Systems hinges on the effective utilization of high-quality data for model training. A considerable number of datasets created in controlled lab environments have recently been released, which has significantly facilitated researchers in developing and evaluating resilient Machine Learning models. However, a substantial portion of the architectures and datasets available are now considered outdated. As a result, the principal aim of this thesis is to contribute to the enhancement of knowledge concerning the creation of contemporary testbed architectures specifically designed for defense systems. The main objective of this study is to propose an innovative testbed infrastructure design, capitalizing on the broad connectivity panOULU public network, to facilitate the analysis and evaluation of AI-based security applications within a public network setting. The testbed incorporates a variety of distributed computing paradigms including edge, fog, and cloud computing. It simplifies the adoption of technologies like Software-Defined Networking, Network Function Virtualization, and Service Orchestration by leveraging the capabilities of the VMware vSphere platform. In the learning phase, a custom-developed application uses information from the attackers to automatically classify incoming data as either normal or malicious. This labeled data is then used for training machine learning models within a federated learning framework (FED-ML). The trained models are validated using previously unseen network data (test data). The entire procedure, from collecting network traffic to labeling data, and from training models within the federated architecture, operates autonomously, removing the necessity for human involvement. The development and implementation of FED-ML models in this thesis may contribute towards laying the groundwork for future-forward, AI-oriented cybersecurity measures. The dataset and testbed configuration showcased in this research could improve our understanding of the challenges associated with safeguarding public networks, especially those with heterogeneous environments comprising various technologies

    Forensic Data Analytics for Anomaly Detection in Evolving Networks

    Full text link
    In the prevailing convergence of traditional infrastructure-based deployment (i.e., Telco and industry operational networks) towards evolving deployments enabled by 5G and virtualization, there is a keen interest in elaborating effective security controls to protect these deployments in-depth. By considering key enabling technologies like 5G and virtualization, evolving networks are democratized, facilitating the establishment of point presences integrating different business models ranging from media, dynamic web content, gaming, and a plethora of IoT use cases. Despite the increasing services provided by evolving networks, many cybercrimes and attacks have been launched in evolving networks to perform malicious activities. Due to the limitations of traditional security artifacts (e.g., firewalls and intrusion detection systems), the research on digital forensic data analytics has attracted more attention. Digital forensic analytics enables people to derive detailed information and comprehensive conclusions from different perspectives of cybercrimes to assist in convicting criminals and preventing future crimes. This chapter presents a digital analytics framework for network anomaly detection, including multi-perspective feature engineering, unsupervised anomaly detection, and comprehensive result correction procedures. Experiments on real-world evolving network data show the effectiveness of the proposed forensic data analytics solution.Comment: Electronic version of an article published as [Book Series: World Scientific Series in Digital Forensics and Cybersecurity, Volume 2, Innovations in Digital Forensics, 2023, Pages 99-137] [DOI:10.1142/9789811273209_0004] \c{opyright} copyright World Scientific Publishing Company [https://doi.org/10.1142/9789811273209_0004

    Management And Security Of Multi-Cloud Applications

    Get PDF
    Single cloud management platform technology has reached maturity and is quite successful in information technology applications. Enterprises and application service providers are increasingly adopting a multi-cloud strategy to reduce the risk of cloud service provider lock-in and cloud blackouts and, at the same time, get the benefits like competitive pricing, the flexibility of resource provisioning and better points of presence. Another class of applications that are getting cloud service providers increasingly interested in is the carriers\u27 virtualized network services. However, virtualized carrier services require high levels of availability and performance and impose stringent requirements on cloud services. They necessitate the use of multi-cloud management and innovative techniques for placement and performance management. We consider two classes of distributed applications – the virtual network services and the next generation of healthcare – that would benefit immensely from deployment over multiple clouds. This thesis deals with the design and development of new processes and algorithms to enable these classes of applications. We have evolved a method for optimization of multi-cloud platforms that will pave the way for obtaining optimized placement for both classes of services. The approach that we have followed for placement itself is predictive cost optimized latency controlled virtual resource placement for both types of applications. To improve the availability of virtual network services, we have made innovative use of the machine and deep learning for developing a framework for fault detection and localization. Finally, to secure patient data flowing through the wide expanse of sensors, cloud hierarchy, virtualized network, and visualization domain, we have evolved hierarchical autoencoder models for data in motion between the IoT domain and the multi-cloud domain and within the multi-cloud hierarchy

    Research challenges in nextgen service orchestration

    Get PDF
    Fog/edge computing, function as a service, and programmable infrastructures, like software-defined networking or network function virtualisation, are becoming ubiquitously used in modern Information Technology infrastructures. These technologies change the characteristics and capabilities of the underlying computational substrate where services run (e.g. higher volatility, scarcer computational power, or programmability). As a consequence, the nature of the services that can be run on them changes too (smaller codebases, more fragmented state, etc.). These changes bring new requirements for service orchestrators, which need to evolve so as to support new scenarios where a close interaction between service and infrastructure becomes essential to deliver a seamless user experience. Here, we present the challenges brought forward by this new breed of technologies and where current orchestration techniques stand with regards to the new challenges. We also present a set of promising technologies that can help tame this brave new world

    A cognitive robotic ecology approach to self-configuring and evolving AAL systems

    Get PDF
    Robotic ecologies are systems made out of several robotic devices, including mobile robots, wireless sensors and effectors embedded in everyday environments, where they cooperate to achieve complex tasks. This paper demonstrates how endowing robotic ecologies with information processing algorithms such as perception, learning, planning, and novelty detection can make these systems able to deliver modular, flexible, manageable and dependable Ambient Assisted Living (AAL) solutions. Specifically, we show how the integrated and self-organising cognitive solutions implemented within the EU project RUBICON (Robotic UBIquitous Cognitive Network) can reduce the need of costly pre-programming and maintenance of robotic ecologies. We illustrate how these solutions can be harnessed to (i) deliver a range of assistive services by coordinating the sensing & acting capabilities of heterogeneous devices, (ii) adapt and tune the overall behaviour of the ecology to the preferences and behaviour of its inhabitants, and also (iii) deal with novel events, due to the occurrence of new user's activities and changing user's habits
    corecore