1,162 research outputs found

    Unsupervised activity recognition for autonomous water drones

    Get PDF
    We propose an automatic system aimed at discovering relevant activities for aquatic drones employed in water monitoring applications. The methodology exploits unsupervised time series segmentation to pursue two main goals: i) to support on-line decision making of drones and operators, ii) to support off-line analysis of large datasets collected by drones. The main novelty of our approach consists of its unsupervised nature, which enables to analyze unlabeled data. We investigate different variants of the proposed approach and validate them using an annotated dataset having labels for activity \u201cupstream/downstream navigation\u201d. Obtained results are encouraging in terms of clustering purity and silhouette which reach values greater than 0.94 and 0.20, respectively, in the best models

    Subspace clustering for situation assessment in aquatic drones

    Get PDF
    We propose a novel methodology based on subspace clustering for detecting, modeling and interpreting aquatic drone states in the context of autonomous water monitoring. It enables both more informative and focused analysis of the large amounts of data collected by the drone, and enhanced situation awareness, which can be exploited by operators and drones to improve decision making and autonomy. The approach is completely data-driven and unsupervised. It takes unlabeled sensor traces from several water monitoring missions and returns both a set of sparse drone state models and a clustering of data samples according to these models. We tested the methodology on a real dataset containing data of six different missions, two rivers and four lakes in different countries, for about 5.5 hours of navigation. Results show that the methodology is able to recognize known states “in/out of the water”, “up- stream/downstream navigation” and “manual/autonomous drive”, and to discover meaningful unknown states from their data-based properties, enabling novelty detection

    eXplainable Modeling (XM): Data Analysis for Intelligent Agents

    Get PDF
    Intelligent agents perform key tasks in several application domains by processing sensor data and taking actions that maximize reward functions based on internal models of the environment and the agent itself. In this paper we present eXplainable Modeling (XM), a Python software which supports data analysis for intelligent agents. XM enables to analyze state-models, namely models of the agent states, discovered from sensor traces by data-driven methods, and to interpret them for improved situation awareness. The main features of the tool are described through the analysis of a real case study concerning aquatic drones for water monitoring

    Airports, Droneports, and the New Urban Airspace

    Get PDF

    Architecture and Applications of IoT Devices in Socially Relevant Fields

    Full text link
    Number of IoT enabled devices are being tried and introduced every year and there is a healthy competition among researched and businesses to capitalize the space created by IoT, as these devices have a great market potential. Depending on the type of task involved and sensitive nature of data that the device handles, various IoT architectures, communication protocols and components are chosen and their performance is evaluated. This paper reviews such IoT enabled devices based on their architecture, communication protocols and functions in few key socially relevant fields like health care, farming, firefighting, women/individual safety/call for help/harm alert, home surveillance and mapping as these fields involve majority of the general public. It can be seen, to one's amazement, that already significant number of devices are being reported on these fields and their performance is promising. This paper also outlines the challenges involved in each of these fields that require solutions to make these devices reliableComment: 1
    corecore