943 research outputs found

    Unsupervised Action Proposal Ranking through Proposal Recombination

    Full text link
    Recently, action proposal methods have played an important role in action recognition tasks, as they reduce the search space dramatically. Most unsupervised action proposal methods tend to generate hundreds of action proposals which include many noisy, inconsistent, and unranked action proposals, while supervised action proposal methods take advantage of predefined object detectors (e.g., human detector) to refine and score the action proposals, but they require thousands of manual annotations to train. Given the action proposals in a video, the goal of the proposed work is to generate a few better action proposals that are ranked properly. In our approach, we first divide action proposal into sub-proposal and then use Dynamic Programming based graph optimization scheme to select the optimal combinations of sub-proposals from different proposals and assign each new proposal a score. We propose a new unsupervised image-based actioness detector that leverages web images and employs it as one of the node scores in our graph formulation. Moreover, we capture motion information by estimating the number of motion contours within each action proposal patch. The proposed method is an unsupervised method that neither needs bounding box annotations nor video level labels, which is desirable with the current explosion of large-scale action datasets. Our approach is generic and does not depend on a specific action proposal method. We evaluate our approach on several publicly available trimmed and un-trimmed datasets and obtain better performance compared to several proposal ranking methods. In addition, we demonstrate that properly ranked proposals produce significantly better action detection as compared to state-of-the-art proposal based methods

    Weakly Labeled Action Recognition and Detection

    Get PDF
    Research in human action recognition strives to develop increasingly generalized methods that are robust to intra-class variability and inter-class ambiguity. Recent years have seen tremendous strides in improving recognition accuracy on ever larger and complex benchmark datasets, comprising realistic actions in the wild videos. Unfortunately, the all-encompassing, dense, global representations that bring about such improvements often benefit from the inherent characteristics, specific to datasets and classes, that do not necessarily reflect knowledge about the entity to be recognized. This results in specific models that perform well within datasets but generalize poorly. Furthermore, training of supervised action recognition and detection methods need several precise spatio-temporal manual annotations to achieve good recognition and detection accuracy. For instance, current deep learning architectures require millions of accurately annotated videos to learn robust action classifiers. However, these annotations are quite difficult to achieve. In the first part of this dissertation, we explore the reasons for poor classifier performance when tested on novel datasets, and quantify the effect of scene backgrounds on action representations and recognition. We attempt to address the problem of recognizing human actions while training and testing on distinct datasets when test videos are neither labeled nor available during training. In this scenario, learning of a joint vocabulary, or domain transfer techniques are not applicable. We perform different types of partitioning of the GIST feature space for several datasets and compute measures of background scene complexity, as well as, for the extent to which scenes are helpful in action classification. We then propose a new process to obtain a measure of confidence in each pixel of the video being a foreground region using motion, appearance, and saliency together in a 3D-Markov Random Field (MRF) based framework. We also propose multiple ways to exploit the foreground confidence: to improve bag-of-words vocabulary, histogram representation of a video, and a novel histogram decomposition based representation and kernel. The above-mentioned work provides probability of each pixel being belonging to the actor, however, it does not give the precise spatio-temporal location of the actor. Furthermore, above framework would require precise spatio-temporal manual annotations to train an action detector. However, manual annotations in videos are laborious, require several annotators and contain human biases. Therefore, in the second part of this dissertation, we propose a weakly labeled approach to automatically obtain spatio-temporal annotations of actors in action videos. We first obtain a large number of action proposals in each video. To capture a few most representative action proposals in each video and evade processing thousands of them, we rank them using optical flow and saliency in a 3D-MRF based framework and select a few proposals using MAP based proposal subset selection method. We demonstrate that this ranking preserves the high-quality action proposals. Several such proposals are generated for each video of the same action. Our next challenge is to iteratively select one proposal from each video so that all proposals are globally consistent. We formulate this as Generalized Maximum Clique Graph problem (GMCP) using shape, global and fine-grained similarity of proposals across the videos. The output of our method is the most action representative proposals from each video. Using our method can also annotate multiple instances of the same action in a video can also be annotated. Moreover, action detection experiments using annotations obtained by our method and several baselines demonstrate the superiority of our approach. The above-mentioned annotation method uses multiple videos of the same action. Therefore, in the third part of this dissertation, we tackle the problem of spatio-temporal action localization in a video, without assuming the availability of multiple videos or any prior annotations. The action is localized by employing images downloaded from the Internet using action label. Given web images, we first dampen image noise using random walk and evade distracting backgrounds within images using image action proposals. Then, given a video, we generate multiple spatio-temporal action proposals. We suppress camera and background generated proposals by exploiting optical flow gradients within proposals. To obtain the most action representative proposals, we propose to reconstruct action proposals in the video by leveraging the action proposals in images. Moreover, we preserve the temporal smoothness of the video and reconstruct all proposal bounding boxes jointly using the constraints that push the coefficients for each bounding box toward a common consensus, thus enforcing the coefficient similarity across multiple frames. We solve this optimization problem using the variant of two-metric projection algorithm. Finally, the video proposal that has the lowest reconstruction cost and is motion salient is used to localize the action. Our method is not only applicable to the trimmed videos, but it can also be used for action localization in untrimmed videos, which is a very challenging problem. Finally, in the third part of this dissertation, we propose a novel approach to generate a few properly ranked action proposals from a large number of noisy proposals. The proposed approach begins with dividing each proposal into sub-proposals. We assume that the quality of proposal remains the same within each sub-proposal. We, then employ a graph optimization method to recombine the sub-proposals in all action proposals in a single video in order to optimally build new action proposals and rank them by the combined node and edge scores. For an untrimmed video, we first divide the video into shots and then make the above-mentioned graph within each shot. Our method generates a few ranked proposals that can be better than all the existing underlying proposals. Our experimental results validated that the properly ranked action proposals can significantly boost action detection results. Our extensive experimental results on different challenging and realistic action datasets, comparisons with several competitive baselines and detailed analysis of each step of proposed methods validate the proposed ideas and frameworks

    Image similarity in medical images

    Get PDF
    Recent experiments have indicated a strong influence of the substrate grain orientation on the self-ordering in anodic porous alumina. Anodic porous alumina with straight pore channels grown in a stable, self-ordered manner is formed on (001) oriented Al grain, while disordered porous pattern is formed on (101) oriented Al grain with tilted pore channels growing in an unstable manner. In this work, numerical simulation of the pore growth process is carried out to understand this phenomenon. The rate-determining step of the oxide growth is assumed to be the Cabrera-Mott barrier at the oxide/electrolyte (o/e) interface, while the substrate is assumed to determine the ratio β between the ionization and oxidation reactions at the metal/oxide (m/o) interface. By numerically solving the electric field inside a growing porous alumina during anodization, the migration rates of the ions and hence the evolution of the o/e and m/o interfaces are computed. The simulated results show that pore growth is more stable when β is higher. A higher β corresponds to more Al ionized and migrating away from the m/o interface rather than being oxidized, and hence a higher retained O:Al ratio in the oxide. Experimentally measured oxygen content in the self-ordered porous alumina on (001) Al is indeed found to be about 3% higher than that in the disordered alumina on (101) Al, in agreement with the theoretical prediction. The results, therefore, suggest that ionization on (001) Al substrate is relatively easier than on (101) Al, and this leads to the more stable growth of the pore channels on (001) Al

    Image similarity in medical images

    Get PDF

    Evolutionary design of deep neural networks

    Get PDF
    Mención Internacional en el título de doctorFor three decades, neuroevolution has applied evolutionary computation to the optimization of the topology of artificial neural networks, with most works focusing on very simple architectures. However, times have changed, and nowadays convolutional neural networks are the industry and academia standard for solving a variety of problems, many of which remained unsolved before the discovery of this kind of networks. Convolutional neural networks involve complex topologies, and the manual design of these topologies for solving a problem at hand is expensive and inefficient. In this thesis, our aim is to use neuroevolution in order to evolve the architecture of convolutional neural networks. To do so, we have decided to try two different techniques: genetic algorithms and grammatical evolution. We have implemented a niching scheme for preserving the genetic diversity, in order to ease the construction of ensembles of neural networks. These techniques have been validated against the MNIST database for handwritten digit recognition, achieving a test error rate of 0.28%, and the OPPORTUNITY data set for human activity recognition, attaining an F1 score of 0.9275. Both results have proven very competitive when compared with the state of the art. Also, in all cases, ensembles have proven to perform better than individual models. Later, the topologies learned for MNIST were tested on EMNIST, a database recently introduced in 2017, which includes more samples and a set of letters for character recognition. Results have shown that the topologies optimized for MNIST perform well on EMNIST, proving that architectures can be reused across domains with similar characteristics. In summary, neuroevolution is an effective approach for automatically designing topologies for convolutional neural networks. However, it still remains as an unexplored field due to hardware limitations. Current advances, however, should constitute the fuel that empowers the emergence of this field, and further research should start as of today.This Ph.D. dissertation has been partially supported by the Spanish Ministry of Education, Culture and Sports under FPU fellowship with identifier FPU13/03917. This research stay has been partially co-funded by the Spanish Ministry of Education, Culture and Sports under FPU short stay grant with identifier EST15/00260.Programa Oficial de Doctorado en Ciencia y Tecnología InformáticaPresidente: María Araceli Sanchís de Miguel.- Secretario: Francisco Javier Segovia Pérez.- Vocal: Simon Luca

    Machine learning methods for discriminating natural targets in seabed imagery

    Get PDF
    The research in this thesis concerns feature-based machine learning processes and methods for discriminating qualitative natural targets in seabed imagery. The applications considered, typically involve time-consuming manual processing stages in an industrial setting. An aim of the research is to facilitate a means of assisting human analysts by expediting the tedious interpretative tasks, using machine methods. Some novel approaches are devised and investigated for solving the application problems. These investigations are compartmentalised in four coherent case studies linked by common underlying technical themes and methods. The first study addresses pockmark discrimination in a digital bathymetry model. Manual identification and mapping of even a relatively small number of these landform objects is an expensive process. A novel, supervised machine learning approach to automating the task is presented. The process maps the boundaries of ≈ 2000 pockmarks in seconds - a task that would take days for a human analyst to complete. The second case study investigates different feature creation methods for automatically discriminating sidescan sonar image textures characteristic of Sabellaria spinulosa colonisation. Results from a comparison of several textural feature creation methods on sonar waterfall imagery show that Gabor filter banks yield some of the best results. A further empirical investigation into the filter bank features created on sonar mosaic imagery leads to the identification of a useful configuration and filter parameter ranges for discriminating the target textures in the imagery. Feature saliency estimation is a vital stage in the machine process. Case study three concerns distance measures for the evaluation and ranking of features on sonar imagery. Two novel consensus methods for creating a more robust ranking are proposed. Experimental results show that the consensus methods can improve robustness over a range of feature parameterisations and various seabed texture classification tasks. The final case study is more qualitative in nature and brings together a number of ideas, applied to the classification of target regions in real-world sonar mosaic imagery. A number of technical challenges arose and these were surmounted by devising a novel, hybrid unsupervised method. This fully automated machine approach was compared with a supervised approach in an application to the problem of image-based sediment type discrimination. The hybrid unsupervised method produces a plausible class map in a few minutes of processing time. It is concluded that the versatile, novel process should be generalisable to the discrimination of other subjective natural targets in real-world seabed imagery, such as Sabellaria textures and pockmarks (with appropriate features and feature tuning.) Further, the full automation of pockmark and Sabellaria discrimination is feasible within this framework

    Exploring alternatives to policy search

    Get PDF
    The field of Reinforcement Learning (RL) has been receiving much attention during the last few years as a new paradigm to solve complex problems. However, one of the main issues with the current state of the art is their computational cost. Compared with other paradigms such as Supervised learning, RL requires constant interaction with the environment, which is both expensive and hard to parallelize. In this work we explore a more scalable alternative to conventional RL through the use of Evolution Strategies (ES). This consists in iteratively modifying the current solution by adding Gaussian noise to it, evaluating these modifications, and use their score to guide the improvement of the solution. The advantage of ES lies on that creating and evaluating these modifications can be parallelized. After introducing the network routing scenario, we used it to compare how ES performed against PPO, a RL policy gradient method. Ultimately ES took advantage of increasing its number of workers to eventually overtake PPO, training faster while also generating better results overall. However, it was also clear that for this to occur ES must have access to a considerable amount of hardware resources, hence being viable only within high perfomance computing environments

    Survey of the State of the Art in Natural Language Generation: Core tasks, applications and evaluation

    Get PDF
    This paper surveys the current state of the art in Natural Language Generation (NLG), defined as the task of generating text or speech from non-linguistic input. A survey of NLG is timely in view of the changes that the field has undergone over the past decade or so, especially in relation to new (usually data-driven) methods, as well as new applications of NLG technology. This survey therefore aims to (a) give an up-to-date synthesis of research on the core tasks in NLG and the architectures adopted in which such tasks are organised; (b) highlight a number of relatively recent research topics that have arisen partly as a result of growing synergies between NLG and other areas of artificial intelligence; (c) draw attention to the challenges in NLG evaluation, relating them to similar challenges faced in other areas of Natural Language Processing, with an emphasis on different evaluation methods and the relationships between them.Comment: Published in Journal of AI Research (JAIR), volume 61, pp 75-170. 118 pages, 8 figures, 1 tabl
    • …
    corecore