1,591 research outputs found

    Recursive Neural Conditional Random Fields for Aspect-based Sentiment Analysis

    Full text link
    In aspect-based sentiment analysis, extracting aspect terms along with the opinions being expressed from user-generated content is one of the most important subtasks. Previous studies have shown that exploiting connections between aspect and opinion terms is promising for this task. In this paper, we propose a novel joint model that integrates recursive neural networks and conditional random fields into a unified framework for explicit aspect and opinion terms co-extraction. The proposed model learns high-level discriminative features and double propagate information between aspect and opinion terms, simultaneously. Moreover, it is flexible to incorporate hand-crafted features into the proposed model to further boost its information extraction performance. Experimental results on the SemEval Challenge 2014 dataset show the superiority of our proposed model over several baseline methods as well as the winning systems of the challenge

    A Variational Approach to Weakly Supervised Document-Level Multi-Aspect Sentiment Classification

    Full text link
    In this paper, we propose a variational approach to weakly supervised document-level multi-aspect sentiment classification. Instead of using user-generated ratings or annotations provided by domain experts, we use target-opinion word pairs as "supervision." These word pairs can be extracted by using dependency parsers and simple rules. Our objective is to predict an opinion word given a target word while our ultimate goal is to learn a sentiment polarity classifier to predict the sentiment polarity of each aspect given a document. By introducing a latent variable, i.e., the sentiment polarity, to the objective function, we can inject the sentiment polarity classifier to the objective via the variational lower bound. We can learn a sentiment polarity classifier by optimizing the lower bound. We show that our method can outperform weakly supervised baselines on TripAdvisor and BeerAdvocate datasets and can be comparable to the state-of-the-art supervised method with hundreds of labels per aspect.Comment: Accepted by NAACL-HLT 201

    Dataset Construction via Attention for Aspect Term Extraction with Distant Supervision

    Full text link
    Aspect Term Extraction (ATE) detects opinionated aspect terms in sentences or text spans, with the end goal of performing aspect-based sentiment analysis. The small amount of available datasets for supervised ATE and the fact that they cover only a few domains raise the need for exploiting other data sources in new and creative ways. Publicly available review corpora contain a plethora of opinionated aspect terms and cover a larger domain spectrum. In this paper, we first propose a method for using such review corpora for creating a new dataset for ATE. Our method relies on an attention mechanism to select sentences that have a high likelihood of containing actual opinionated aspects. We thus improve the quality of the extracted aspects. We then use the constructed dataset to train a model and perform ATE with distant supervision. By evaluating on human annotated datasets, we prove that our method achieves a significantly improved performance over various unsupervised and supervised baselines. Finally, we prove that sentence selection matters when it comes to creating new datasets for ATE. Specifically, we show that, using a set of selected sentences leads to higher ATE performance compared to using the whole sentence set

    Unsupervised Aspect Term Extraction with B-LSTM & CRF using Automatically Labelled Datasets

    Full text link
    Aspect Term Extraction (ATE) identifies opinionated aspect terms in texts and is one of the tasks in the SemEval Aspect Based Sentiment Analysis (ABSA) contest. The small amount of available datasets for supervised ATE and the costly human annotation for aspect term labelling give rise to the need for unsupervised ATE. In this paper, we introduce an architecture that achieves top-ranking performance for supervised ATE. Moreover, it can be used efficiently as feature extractor and classifier for unsupervised ATE. Our second contribution is a method to automatically construct datasets for ATE. We train a classifier on our automatically labelled datasets and evaluate it on the human annotated SemEval ABSA test sets. Compared to a strong rule-based baseline, we obtain a dramatically higher F-score and attain precision values above 80%. Our unsupervised method beats the supervised ABSA baseline from SemEval, while preserving high precision scores.Comment: 9 pages, 3 figures, 2 tables 8th Workshop on Computational Approaches to Subjectivity, Sentiment & Social Media Analysis (WASSA), EMNLP 201

    Deep Learning for Sentiment Analysis : A Survey

    Full text link
    Deep learning has emerged as a powerful machine learning technique that learns multiple layers of representations or features of the data and produces state-of-the-art prediction results. Along with the success of deep learning in many other application domains, deep learning is also popularly used in sentiment analysis in recent years. This paper first gives an overview of deep learning and then provides a comprehensive survey of its current applications in sentiment analysis.Comment: 34 pages, 9 figures, 2 table

    Targeted Sentiment Analysis: A Data-Driven Categorization

    Full text link
    Targeted sentiment analysis (TSA), also known as aspect based sentiment analysis (ABSA), aims at detecting fine-grained sentiment polarity towards targets in a given opinion document. Due to the lack of labeled datasets and effective technology, TSA had been intractable for many years. The newly released datasets and the rapid development of deep learning technologies are key enablers for the recent significant progress made in this area. However, the TSA tasks have been defined in various ways with different understandings towards basic concepts like `target' and `aspect'. In this paper, we categorize the different tasks and highlight the differences in the available datasets and their specific tasks. We then further discuss the challenges related to data collection and data annotation which are overlooked in many previous studies.Comment: Draf

    Information Extraction from Scientific Literature for Method Recommendation

    Full text link
    As a research community grows, more and more papers are published each year. As a result there is increasing demand for improved methods for finding relevant papers, automatically understanding the key ideas and recommending potential methods for a target problem. Despite advances in search engines, it is still hard to identify new technologies according to a researcher's need. Due to the large variety of domains and extremely limited annotated resources, there has been relatively little work on leveraging natural language processing in scientific recommendation. In this proposal, we aim at making scientific recommendations by extracting scientific terms from a large collection of scientific papers and organizing the terms into a knowledge graph. In preliminary work, we trained a scientific term extractor using a small amount of annotated data and obtained state-of-the-art performance by leveraging large amount of unannotated papers through applying multiple semi-supervised approaches. We propose to construct a knowledge graph in a way that can make minimal use of hand annotated data, using only the extracted terms, unsupervised relational signals such as co-occurrence, and structural external resources such as Wikipedia. Latent relations between scientific terms can be learned from the graph. Recommendations will be made through graph inference for both observed and unobserved relational pairs.Comment: Thesis Proposal. arXiv admin note: text overlap with arXiv:1708.0607

    PoD: Positional Dependency-Based Word Embedding for Aspect Term Extraction

    Full text link
    Dependency context-based word embedding jointly learns the representations of word and dependency context, and has been proved effective in aspect term extraction. In this paper, we design the positional dependency-based word embedding (PoD) which considers both dependency context and positional context for aspect term extraction. Specifically, the positional context is modeled via relative position encoding. Besides, we enhance the dependency context by integrating more lexical information (e.g., POS tags) along dependency paths. Experiments on SemEval 2014/2015/2016 datasets show that our approach outperforms other embedding methods in aspect term extraction.Comment: 7 pages, 1 figure, 3 table

    Controlled CNN-based Sequence Labeling for Aspect Extraction

    Full text link
    One key task of fine-grained sentiment analysis on reviews is to extract aspects or features that users have expressed opinions on. This paper focuses on supervised aspect extraction using a modified CNN called controlled CNN (Ctrl). The modified CNN has two types of control modules. Through asynchronous parameter updating, it prevents over-fitting and boosts CNN's performance significantly. This model achieves state-of-the-art results on standard aspect extraction datasets. To the best of our knowledge, this is the first paper to apply control modules to aspect extraction

    A Variational Approach to Unsupervised Sentiment Analysis

    Full text link
    In this paper, we propose a variational approach to unsupervised sentiment analysis. Instead of using ground truth provided by domain experts, we use target-opinion word pairs as a supervision signal. For example, in a document snippet "the room is big," (room, big) is a target-opinion word pair. These word pairs can be extracted by using dependency parsers and simple rules. Our objective function is to predict an opinion word given a target word while our ultimate goal is to learn a sentiment classifier. By introducing a latent variable, i.e., the sentiment polarity, to the objective function, we can inject the sentiment classifier to the objective function via the evidence lower bound. We can learn a sentiment classifier by optimizing the lower bound. We also impose sophisticated constraints on opinion words as regularization which encourages that if two documents have similar (dissimilar) opinion words, the sentiment classifiers should produce similar (different) probability distribution. We apply our method to sentiment analysis on customer reviews and clinical narratives. The experiment results show our method can outperform unsupervised baselines in sentiment analysis task on both domains, and our method obtains comparable results to the supervised method with hundreds of labels per aspect in customer reviews domain, and obtains comparable results to supervised methods in clinical narratives domain.Comment: arXiv admin note: substantial text overlap with arXiv:1904.0505
    • …
    corecore