3,634 research outputs found

    Neural Nets and Star/Galaxy Separation in Wide Field Astronomical Images

    Get PDF
    One of the most relevant problems in the extraction of scientifically useful information from wide field astronomical images (both photographic plates and CCD frames) is the recognition of the objects against a noisy background and their classification in unresolved (star-like) and resolved (galaxies) sources. In this paper we present a neural network based method capable to perform both tasks and discuss in detail the performance of object detection in a representative celestial field. The performance of our method is compared to that of other methodologies often used within the astronomical community.Comment: 6 pages, to appear in the proceedings of IJCNN 99, IEEE Press, 199

    Data-Driven Shape Analysis and Processing

    Full text link
    Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.Comment: 10 pages, 19 figure

    Artificial neural networks in geospatial analysis

    Full text link
    Artificial neural networks are computational models widely used in geospatial analysis for data classification, change detection, clustering, function approximation, and forecasting or prediction. There are many types of neural networks based on learning paradigm and network architectures. Their use is expected to grow with increasing availability of massive data from remote sensing and mobile platforms

    Country corruption analysis with self organizing maps and support vector machines.

    Get PDF
    During recent years, the empirical research on corruption has grown considerably. Possible links between government corruption and terrorism have attracted an increasing interest in this research field. Most of the existing literature discusses the topic from a socio-economical perspective and only few studies tackle this research field from a data mining point of view. In this paper, we apply data mining techniques onto a cross-country database linking macro-economical variables to perceived levels of corruption. In the first part, self organizing maps are applied to study the interconnections between these variables. Afterwards, support vector machines are trained on part of the data and used to forecast corruption for other countries. Large deviations for specific countries between these models' predictions and the actual values can prove useful for further research. Finally, projection of the forecasts onto a self organizing map allows a detailed comparison between the different models' behavior.cross-country;
    • 

    corecore