974 research outputs found

    Unsupervised Text Style Transfer using Language Models as Discriminators

    Full text link
    Binary classifiers are often employed as discriminators in GAN-based unsupervised style transfer systems to ensure that transferred sentences are similar to sentences in the target domain. One difficulty with this approach is that the error signal provided by the discriminator can be unstable and is sometimes insufficient to train the generator to produce fluent language. In this paper, we propose a new technique that uses a target domain language model as the discriminator, providing richer and more stable token-level feedback during the learning process. We train the generator to minimize the negative log likelihood (NLL) of generated sentences, evaluated by the language model. By using a continuous approximation of discrete sampling under the generator, our model can be trained using back-propagation in an end- to-end fashion. Moreover, our empirical results show that when using a language model as a structured discriminator, it is possible to forgo adversarial steps during training, making the process more stable. We compare our model with previous work using convolutional neural networks (CNNs) as discriminators and show that our approach leads to improved performance on three tasks: word substitution decipherment, sentiment modification, and related language translation.Comment: NeurIPS camera read

    Unsupervised Evaluation Metrics and Learning Criteria for Non-Parallel Textual Transfer

    Full text link
    We consider the problem of automatically generating textual paraphrases with modified attributes or properties, focusing on the setting without parallel data (Hu et al., 2017; Shen et al., 2017). This setting poses challenges for evaluation. We show that the metric of post-transfer classification accuracy is insufficient on its own, and propose additional metrics based on semantic preservation and fluency as well as a way to combine them into a single overall score. We contribute new loss functions and training strategies to address the different metrics. Semantic preservation is addressed by adding a cyclic consistency loss and a loss based on paraphrase pairs, while fluency is improved by integrating losses based on style-specific language models. We experiment with a Yelp sentiment dataset and a new literature dataset that we propose, using multiple models that extend prior work (Shen et al., 2017). We demonstrate that our metrics correlate well with human judgments, at both the sentence-level and system-level. Automatic and manual evaluation also show large improvements over the baseline method of Shen et al. (2017). We hope that our proposed metrics can speed up system development for new textual transfer tasks while also encouraging the community to address our three complementary aspects of transfer quality.Comment: EMNLP 2019 Workshop on Neural Generation and Translation (WNGT

    A Probabilistic Formulation of Unsupervised Text Style Transfer

    Full text link
    We present a deep generative model for unsupervised text style transfer that unifies previously proposed non-generative techniques. Our probabilistic approach models non-parallel data from two domains as a partially observed parallel corpus. By hypothesizing a parallel latent sequence that generates each observed sequence, our model learns to transform sequences from one domain to another in a completely unsupervised fashion. In contrast with traditional generative sequence models (e.g. the HMM), our model makes few assumptions about the data it generates: it uses a recurrent language model as a prior and an encoder-decoder as a transduction distribution. While computation of marginal data likelihood is intractable in this model class, we show that amortized variational inference admits a practical surrogate. Further, by drawing connections between our variational objective and other recent unsupervised style transfer and machine translation techniques, we show how our probabilistic view can unify some known non-generative objectives such as backtranslation and adversarial loss. Finally, we demonstrate the effectiveness of our method on a wide range of unsupervised style transfer tasks, including sentiment transfer, formality transfer, word decipherment, author imitation, and related language translation. Across all style transfer tasks, our approach yields substantial gains over state-of-the-art non-generative baselines, including the state-of-the-art unsupervised machine translation techniques that our approach generalizes. Further, we conduct experiments on a standard unsupervised machine translation task and find that our unified approach matches the current state-of-the-art.Comment: ICLR 2020 conference paper (spotlight). The first two authors contributed equall

    Content preserving text generation with attribute controls

    Full text link
    In this work, we address the problem of modifying textual attributes of sentences. Given an input sentence and a set of attribute labels, we attempt to generate sentences that are compatible with the conditioning information. To ensure that the model generates content compatible sentences, we introduce a reconstruction loss which interpolates between auto-encoding and back-translation loss components. We propose an adversarial loss to enforce generated samples to be attribute compatible and realistic. Through quantitative, qualitative and human evaluations we demonstrate that our model is capable of generating fluent sentences that better reflect the conditioning information compared to prior methods. We further demonstrate that the model is capable of simultaneously controlling multiple attributes.Comment: NIPS 201

    DualGAN: Unsupervised Dual Learning for Image-to-Image Translation

    Full text link
    Conditional Generative Adversarial Networks (GANs) for cross-domain image-to-image translation have made much progress recently. Depending on the task complexity, thousands to millions of labeled image pairs are needed to train a conditional GAN. However, human labeling is expensive, even impractical, and large quantities of data may not always be available. Inspired by dual learning from natural language translation, we develop a novel dual-GAN mechanism, which enables image translators to be trained from two sets of unlabeled images from two domains. In our architecture, the primal GAN learns to translate images from domain U to those in domain V, while the dual GAN learns to invert the task. The closed loop made by the primal and dual tasks allows images from either domain to be translated and then reconstructed. Hence a loss function that accounts for the reconstruction error of images can be used to train the translators. Experiments on multiple image translation tasks with unlabeled data show considerable performance gain of DualGAN over a single GAN. For some tasks, DualGAN can even achieve comparable or slightly better results than conditional GAN trained on fully labeled data.Comment: Accepted by ICCV 201

    Toward Unsupervised Text Content Manipulation

    Full text link
    Controlled generation of text is of high practical use. Recent efforts have made impressive progress in generating or editing sentences with given textual attributes (e.g., sentiment). This work studies a new practical setting of text content manipulation. Given a structured record, such as `(PLAYER: Lebron, POINTS: 20, ASSISTS: 10)', and a reference sentence, such as `Kobe easily dropped 30 points', we aim to generate a sentence that accurately describes the full content in the record, with the same writing style (e.g., wording, transitions) of the reference. The problem is unsupervised due to lack of parallel data in practice, and is challenging to minimally yet effectively manipulate the text (by rewriting/adding/deleting text portions) to ensure fidelity to the structured content. We derive a dataset from a basketball game report corpus as our testbed, and develop a neural method with unsupervised competing objectives and explicit content coverage constraints. Automatic and human evaluations show superiority of our approach over competitive methods including a strong rule-based baseline and prior approaches designed for style transfer.Comment: The first 2 authors contributed equally. Dataset is released at https://github.com/ZhitingHu/text_content_manipulatio

    Structured Content Preservation for Unsupervised Text Style Transfer

    Full text link
    Text style transfer aims to modify the style of a sentence while keeping its content unchanged. Recent style transfer systems often fail to faithfully preserve the content after changing the style. This paper proposes a structured content preserving model that leverages linguistic information in the structured fine-grained supervisions to better preserve the style-independent content during style transfer. In particular, we achieve the goal by devising rich model objectives based on both the sentence's lexical information and a language model that conditions on content. The resulting model therefore is encouraged to retain the semantic meaning of the target sentences. We perform extensive experiments that compare our model to other existing approaches in the tasks of sentiment and political slant transfer. Our model achieves significant improvement in terms of both content preservation and style transfer in automatic and human evaluation

    Generative Creativity: Adversarial Learning for Bionic Design

    Full text link
    Bionic design refers to an approach of generative creativity in which a target object (e.g. a floor lamp) is designed to contain features of biological source objects (e.g. flowers), resulting in creative biologically-inspired design. In this work, we attempt to model the process of shape-oriented bionic design as follows: given an input image of a design target object, the model generates images that 1) maintain shape features of the input design target image, 2) contain shape features of images from the specified biological source domain, 3) are plausible and diverse. We propose DesignGAN, a novel unsupervised deep generative approach to realising bionic design. Specifically, we employ a conditional Generative Adversarial Networks architecture with several designated losses (an adversarial loss, a regression loss, a cycle loss and a latent loss) that respectively constrict our model to meet the corresponding aforementioned requirements of bionic design modelling. We perform qualitative and quantitative experiments to evaluate our method, and demonstrate that our proposed approach successfully generates creative images of bionic design

    Learning image-to-image translation using paired and unpaired training samples

    Full text link
    Image-to-image translation is a general name for a task where an image from one domain is converted to a corresponding image in another domain, given sufficient training data. Traditionally different approaches have been proposed depending on whether aligned image pairs or two sets of (unaligned) examples from both domains are available for training. While paired training samples might be difficult to obtain, the unpaired setup leads to a highly under-constrained problem and inferior results. In this paper, we propose a new general purpose image-to-image translation model that is able to utilize both paired and unpaired training data simultaneously. We compare our method with two strong baselines and obtain both qualitatively and quantitatively improved results. Our model outperforms the baselines also in the case of purely paired and unpaired training data. To our knowledge, this is the first work to consider such hybrid setup in image-to-image translation

    SingleGAN: Image-to-Image Translation by a Single-Generator Network using Multiple Generative Adversarial Learning

    Full text link
    Image translation is a burgeoning field in computer vision where the goal is to learn the mapping between an input image and an output image. However, most recent methods require multiple generators for modeling different domain mappings, which are inefficient and ineffective on some multi-domain image translation tasks. In this paper, we propose a novel method, SingleGAN, to perform multi-domain image-to-image translations with a single generator. We introduce the domain code to explicitly control the different generative tasks and integrate multiple optimization goals to ensure the translation. Experimental results on several unpaired datasets show superior performance of our model in translation between two domains. Besides, we explore variants of SingleGAN for different tasks, including one-to-many domain translation, many-to-many domain translation and one-to-one domain translation with multimodality. The extended experiments show the universality and extensibility of our model.Comment: Accepted in ACCV 2018. Code is available at https://github.com/Xiaoming-Yu/SingleGA
    • …
    corecore