620 research outputs found

    Unsupervised Terminological Ontology Learning based on Hierarchical Topic Modeling

    Full text link
    In this paper, we present hierarchical relationbased latent Dirichlet allocation (hrLDA), a data-driven hierarchical topic model for extracting terminological ontologies from a large number of heterogeneous documents. In contrast to traditional topic models, hrLDA relies on noun phrases instead of unigrams, considers syntax and document structures, and enriches topic hierarchies with topic relations. Through a series of experiments, we demonstrate the superiority of hrLDA over existing topic models, especially for building hierarchies. Furthermore, we illustrate the robustness of hrLDA in the settings of noisy data sets, which are likely to occur in many practical scenarios. Our ontology evaluation results show that ontologies extracted from hrLDA are very competitive with the ontologies created by domain experts

    An unsupervised approach to disjointness learning based on terminological cluster trees

    Get PDF
    In the context of the Semantic Web regarded as a Web of Data, research efforts have been devoted to improving the quality of the ontologies that are used as vocabularies to enable complex services based on automated reasoning. From various surveys it emerges that many domains would require better ontologies that include non-negligible constraints for properly conveying the intended semantics. In this respect, disjointness axioms are representative of this general problem: these axioms are essential for making the negative knowledge about the domain of interest explicit yet they are often overlooked during the modeling process (thus affecting the efficacy of the reasoning services). To tackle this problem, automated methods for discovering these axioms can be used as a tool for supporting knowledge engineers in modeling new ontologies or evolving existing ones. The current solutions, either based on statistical correlations or relying on external corpora, often do not fully exploit the terminology. Stemming from this consideration, we have been investigating on alternative methods to elicit disjointness axioms from existing ontologies based on the induction of terminological cluster trees, which are logic trees in which each node stands for a cluster of individuals which emerges as a sub-concept. The growth of such trees relies on a divide-and-conquer procedure that assigns, for the cluster representing the root node, one of the concept descriptions generated via a refinement operator and selected according to a heuristic based on the minimization of the risk of overlap between the candidate sub-clusters (quantified in terms of the distance between two prototypical individuals). Preliminary works have showed some shortcomings that are tackled in this paper. To tackle the task of disjointness axioms discovery we have extended the terminological cluster tree induction framework with various contributions: 1) the adoption of different distance measures for clustering the individuals of a knowledge base; 2) the adoption of different heuristics for selecting the most promising concept descriptions; 3) a modified version of the refinement operator to prevent the introduction of inconsistency during the elicitation of the new axioms. A wide empirical evaluation showed the feasibility of the proposed extensions and the improvement with respect to alternative approaches

    Distributional semantic modeling: a revised technique to train term/word vector space models applying the ontology-related approach

    Full text link
    We design a new technique for the distributional semantic modeling with a neural network-based approach to learn distributed term representations (or term embeddings) - term vector space models as a result, inspired by the recent ontology-related approach (using different types of contextual knowledge such as syntactic knowledge, terminological knowledge, semantic knowledge, etc.) to the identification of terms (term extraction) and relations between them (relation extraction) called semantic pre-processing technology - SPT. Our method relies on automatic term extraction from the natural language texts and subsequent formation of the problem-oriented or application-oriented (also deeply annotated) text corpora where the fundamental entity is the term (includes non-compositional and compositional terms). This gives us an opportunity to changeover from distributed word representations (or word embeddings) to distributed term representations (or term embeddings). This transition will allow to generate more accurate semantic maps of different subject domains (also, of relations between input terms - it is useful to explore clusters and oppositions, or to test your hypotheses about them). The semantic map can be represented as a graph using Vec2graph - a Python library for visualizing word embeddings (term embeddings in our case) as dynamic and interactive graphs. The Vec2graph library coupled with term embeddings will not only improve accuracy in solving standard NLP tasks, but also update the conventional concept of automated ontology development. The main practical result of our work is the development kit (set of toolkits represented as web service APIs and web application), which provides all necessary routines for the basic linguistic pre-processing and the semantic pre-processing of the natural language texts in Ukrainian for future training of term vector space models.Comment: In English, 9 pages, 2 figures. Not published yet. Prepared for special issue (UkrPROG 2020 conference) of the scientific journal "Problems in programming" (Founder: National Academy of Sciences of Ukraine, Institute of Software Systems of NAS Ukraine

    Conceptual Representations for Computational Concept Creation

    Get PDF
    Computational creativity seeks to understand computational mechanisms that can be characterized as creative. The creation of new concepts is a central challenge for any creative system. In this article, we outline different approaches to computational concept creation and then review conceptual representations relevant to concept creation, and therefore to computational creativity. The conceptual representations are organized in accordance with two important perspectives on the distinctions between them. One distinction is between symbolic, spatial and connectionist representations. The other is between descriptive and procedural representations. Additionally, conceptual representations used in particular creative domains, such as language, music, image and emotion, are reviewed separately. For every representation reviewed, we cover the inference it affords, the computational means of building it, and its application in concept creation.Peer reviewe

    A Biased Topic Modeling Approach for Case Control Study from Health Related Social Media Postings

    Get PDF
    abstract: Online social networks are the hubs of social activity in cyberspace, and using them to exchange knowledge, experiences, and opinions is common. In this work, an advanced topic modeling framework is designed to analyse complex longitudinal health information from social media with minimal human annotation, and Adverse Drug Events and Reaction (ADR) information is extracted and automatically processed by using a biased topic modeling method. This framework improves and extends existing topic modelling algorithms that incorporate background knowledge. Using this approach, background knowledge such as ADR terms and other biomedical knowledge can be incorporated during the text mining process, with scores which indicate the presence of ADR being generated. A case control study has been performed on a data set of twitter timelines of women that announced their pregnancy, the goals of the study is to compare the ADR risk of medication usage from each medication category during the pregnancy. In addition, to evaluate the prediction power of this approach, another important aspect of personalized medicine was addressed: the prediction of medication usage through the identification of risk groups. During the prediction process, the health information from Twitter timeline, such as diseases, symptoms, treatments, effects, and etc., is summarized by the topic modelling processes and the summarization results is used for prediction. Dimension reduction and topic similarity measurement are integrated into this framework for timeline classification and prediction. This work could be applied to provide guidelines for FDA drug risk categories. Currently, this process is done based on laboratory results and reported cases. Finally, a multi-dimensional text data warehouse (MTD) to manage the output from the topic modelling is proposed. Some attempts have been also made to incorporate topic structure (ontology) and the MTD hierarchy. Results demonstrate that proposed methods show promise and this system represents a low-cost approach for drug safety early warning.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    An unsupervised data-driven method to discover equivalent relations in large linked datasets

    Get PDF
    This article addresses a number of limitations of state-of-the-art methods of Ontology Alignment: 1) they primarily address concepts and entities while relations are less well-studied; 2) many build on the assumption of the ‘well-formedness’ of ontologies which is unnecessarily true in the domain of Linked Open Data; 3) few have looked at schema heterogeneity from a single source, which is also a common issue particularly in very large Linked Dataset created automatically from heterogeneous resources, or integrated from multiple datasets. We propose a domain- and language-independent and completely unsupervised method to align equivalent relations across schemata based on their shared instances. We introduce a novel similarity measure able to cope with unbalanced population of schema elements, an unsupervised technique to automatically decide similarity threshold to assert equivalence for a pair of relations, and an unsupervised clustering process to discover groups of equivalent relations across different schemata. Although the method is designed for aligning relations within a single dataset, it can also be adapted for cross-dataset alignment where sameAs links between datasets have been established. Using three gold standards created based on DBpedia, we obtain encouraging results from a thorough evaluation involving four baseline similarity measures and over 15 comparative models based on variants of the proposed method. The proposed method makes significant improvement over baseline models in terms of F1 measure (mostly between 7% and 40%), and it always scores the highest precision and is also among the top performers in terms of recall. We also make public the datasets used in this work, which we believe make the largest collection of gold standards for evaluating relation alignment in the LOD context

    Introduction: Modeling, Learning and Processing of Text-Technological Data Structures

    Get PDF
    Researchers in many disciplines, sometimes working in close cooperation, have been concerned with modeling textual data in order to account for texts as the prime information unit of written communication. The list of disciplines includes computer science and linguistics as well as more specialized disciplines like computational linguistics and text technology. What many of these efforts have in common is the aim to model textual data by means of abstract data types or data structures that support at least the semi-automatic processing of texts in any area of written communication
    corecore