3,906 research outputs found

    Learnable PINs: Cross-Modal Embeddings for Person Identity

    Full text link
    We propose and investigate an identity sensitive joint embedding of face and voice. Such an embedding enables cross-modal retrieval from voice to face and from face to voice. We make the following four contributions: first, we show that the embedding can be learnt from videos of talking faces, without requiring any identity labels, using a form of cross-modal self-supervision; second, we develop a curriculum learning schedule for hard negative mining targeted to this task, that is essential for learning to proceed successfully; third, we demonstrate and evaluate cross-modal retrieval for identities unseen and unheard during training over a number of scenarios and establish a benchmark for this novel task; finally, we show an application of using the joint embedding for automatically retrieving and labelling characters in TV dramas.Comment: To appear in ECCV 201

    Audio-Visual Learning for Scene Understanding

    Get PDF
    Multimodal deep learning aims at combining the complementary information of different modalities. Among all modalities, audio and video are the predominant ones that humans use to explore the world. In this thesis, we decided to focus our study on audio-visual deep learning to mimic with our networks how humans perceive the world. Our research includes images, audio signals and acoustic images. The latter provide spatial audio information and are obtained from a planar array of microphones combining their raw audios with the beamforming algorithm. They better mimic human auditory systems, which cannot be replicated using just one microphone, not able alone to give spatial sound cues. However, as microphones arrays are not so widespread, we also study how to handle the missing spatialized audio modality at test time. As a solution, we propose to distill acoustic images content to audio features during the training in order to handle their absence at test time. This is done for supervised audio classification using the generalized distillation framework, which we also extend for self-supervised learning. Next, we devise a method for reconstructing acoustic images given a single microphone and an RGB frame. Therefore, in case we just dispose of a standard video, we are able to synthesize spatial audio, which is useful for many audio-visual tasks, including sound localization. Lastly, as another example of restoring one modality from available ones, we inpaint degraded images providing audio features, to reconstruct the missing region not only to be visually plausible but also semantically consistent with the related sound. This includes also cross-modal generation, in the limit case of completely missing or hidden visual modality: our method naturally deals with it, being able to generate images from sound. In summary we show how audio can help visual learning and vice versa, by transferring knowledge between the two modalities at training time, in order to distill, reconstruct, or restore the missing modality at test time

    Pairwise Teacher-Student Network for Semi-Supervised Hashing

    Full text link
    Hashing method maps similar high-dimensional data to binary hashcodes with smaller hamming distance, and it has received broad attention due to its low storage cost and fast retrieval speed. Pairwise similarity is easily obtained and widely used for retrieval, and most supervised hashing algorithms are carefully designed for the pairwise supervisions. As labeling all data pairs is difficult, semi-supervised hashing is proposed which aims at learning efficient codes with limited labeled pairs and abundant unlabeled ones. Existing methods build graphs to capture the structure of dataset, but they are not working well for complex data as the graph is built based on the data representations and determining the representations of complex data is difficult. In this paper, we propose a novel teacher-student semi-supervised hashing framework in which the student is trained with the pairwise information produced by the teacher network. The network follows the smoothness assumption, which achieves consistent distances for similar data pairs so that the retrieval results are similar for neighborhood queries. Experiments on large-scale datasets show that the proposed method reaches impressive gain over the supervised baselines and is superior to state-of-the-art semi-supervised hashing methods
    corecore