4,842 research outputs found

    Fisher Vectors Derived from Hybrid Gaussian-Laplacian Mixture Models for Image Annotation

    Full text link
    In the traditional object recognition pipeline, descriptors are densely sampled over an image, pooled into a high dimensional non-linear representation and then passed to a classifier. In recent years, Fisher Vectors have proven empirically to be the leading representation for a large variety of applications. The Fisher Vector is typically taken as the gradients of the log-likelihood of descriptors, with respect to the parameters of a Gaussian Mixture Model (GMM). Motivated by the assumption that different distributions should be applied for different datasets, we present two other Mixture Models and derive their Expectation-Maximization and Fisher Vector expressions. The first is a Laplacian Mixture Model (LMM), which is based on the Laplacian distribution. The second Mixture Model presented is a Hybrid Gaussian-Laplacian Mixture Model (HGLMM) which is based on a weighted geometric mean of the Gaussian and Laplacian distribution. An interesting property of the Expectation-Maximization algorithm for the latter is that in the maximization step, each dimension in each component is chosen to be either a Gaussian or a Laplacian. Finally, by using the new Fisher Vectors derived from HGLMMs, we achieve state-of-the-art results for both the image annotation and the image search by a sentence tasks.Comment: new version includes text synthesis by an RNN and experiments with the COCO benchmar

    Unsupervised Learning of Individuals and Categories from Images

    Get PDF
    Motivated by the existence of highly selective, sparsely firing cells observed in the human medial temporal lobe (MTL), we present an unsupervised method for learning and recognizing object categories from unlabeled images. In our model, a network of nonlinear neurons learns a sparse representation of its inputs through an unsupervised expectation-maximization process. We show that the application of this strategy to an invariant feature-based description of natural images leads to the development of units displaying sparse, invariant selectivity for particular individuals or image categories much like those observed in the MTL data

    Survey of Object Detection Methods in Camouflaged Image

    Get PDF
    Camouflage is an attempt to conceal the signature of a target object into the background image. Camouflage detection methods or Decamouflaging method is basically used to detect foreground object hidden in the background image. In this research paper authors presented survey of camouflage detection methods for different applications and areas
    • …
    corecore