309 research outputs found

    Manufacturing Quality Control with Autoencoder-Based Defect Localization and Unsupervised Class Selection

    Full text link
    Manufacturing industries require efficient and voluminous production of high-quality finished goods. In the context of Industry 4.0, visual anomaly detection poses an optimistic solution for automatically controlling product quality with high precision. Automation based on computer vision poses a promising solution to prevent bottlenecks at the product quality checkpoint. We considered recent advancements in machine learning to improve visual defect localization, but challenges persist in obtaining a balanced feature set and database of the wide variety of defects occurring in the production line. This paper proposes a defect localizing autoencoder with unsupervised class selection by clustering with k-means the features extracted from a pre-trained VGG-16 network. The selected classes of defects are augmented with natural wild textures to simulate artificial defects. The study demonstrates the effectiveness of the defect localizing autoencoder with unsupervised class selection for improving defect detection in manufacturing industries. The proposed methodology shows promising results with precise and accurate localization of quality defects on melamine-faced boards for the furniture industry. Incorporating artificial defects into the training data shows significant potential for practical implementation in real-world quality control scenarios

    A Survey on Unsupervised Anomaly Detection Algorithms for Industrial Images

    Full text link
    In line with the development of Industry 4.0, surface defect detection/anomaly detection becomes a topical subject in the industry field. Improving efficiency as well as saving labor costs has steadily become a matter of great concern in practice, where deep learning-based algorithms perform better than traditional vision inspection methods in recent years. While existing deep learning-based algorithms are biased towards supervised learning, which not only necessitates a huge amount of labeled data and human labor, but also brings about inefficiency and limitations. In contrast, recent research shows that unsupervised learning has great potential in tackling the above disadvantages for visual industrial anomaly detection. In this survey, we summarize current challenges and provide a thorough overview of recently proposed unsupervised algorithms for visual industrial anomaly detection covering five categories, whose innovation points and frameworks are described in detail. Meanwhile, publicly available datasets for industrial anomaly detection are introduced. By comparing different classes of methods, the advantages and disadvantages of anomaly detection algorithms are summarized. Based on the current research framework, we point out the core issue that remains to be resolved and provide further improvement directions. Meanwhile, based on the latest technological trends, we offer insights into future research directions. It is expected to assist both the research community and industry in developing a broader and cross-domain perspective

    Anomaly Detection in Automated Fibre Placement: Learning with Data Limitations

    Full text link
    Conventional defect detection systems in Automated Fibre Placement (AFP) typically rely on end-to-end supervised learning, necessitating a substantial number of labelled defective samples for effective training. However, the scarcity of such labelled data poses a challenge. To overcome this limitation, we present a comprehensive framework for defect detection and localization in Automated Fibre Placement. Our approach combines unsupervised deep learning and classical computer vision algorithms, eliminating the need for labelled data or manufacturing defect samples. It efficiently detects various surface issues while requiring fewer images of composite parts for training. Our framework employs an innovative sample extraction method leveraging AFP's inherent symmetry to expand the dataset. By inputting a depth map of the fibre layup surface, we extract local samples aligned with each composite strip (tow). These samples are processed through an autoencoder, trained on normal samples for precise reconstructions, highlighting anomalies through reconstruction errors. Aggregated values form an anomaly map for insightful visualization. The framework employs blob detection on this map to locate manufacturing defects. The experimental findings reveal that despite training the autoencoder with a limited number of images, our proposed method exhibits satisfactory detection accuracy and accurately identifies defect locations. Our framework demonstrates comparable performance to existing methods, while also offering the advantage of detecting all types of anomalies without relying on an extensive labelled dataset of defects

    Self-supervised pre-training of CNNs for flatness defect classification in the steelworks industry

    Get PDF
    Classification of surface defects in the steelworks industry plays a significant role in guaranteeing the quality of the products. From an industrial point of view, a serious concern is represented by the hot-rolled products shape defects and particularly those concerning the strip flatness. Flatness defects are typically divided into four sub-classes depending on which part of the strip is affected and the corresponding shape. In the context of this research, the primary objective is evaluating the improvements of exploiting the self-supervised learning paradigm for defects classification, taking advantage of unlabelled, real, steel strip flatness maps. Different pre-training methods are compared, as well as architectures, taking advantage of well-established neural subnetworks, such as Residual and Inception modules. A systematic approach in evaluating the different performances guarantees a formal verification of the self-supervised pre-training paradigms evaluated hereafter. In particular, pre-training neural networks with the EgoMotion meta-algorithm shows classification improvements over the AutoEncoder technique, which in turn is better performing than a Glorot weight initialization

    A survey on generative adversarial networks for imbalance problems in computer vision tasks

    Get PDF
    Any computer vision application development starts off by acquiring images and data, then preprocessing and pattern recognition steps to perform a task. When the acquired images are highly imbalanced and not adequate, the desired task may not be achievable. Unfortunately, the occurrence of imbalance problems in acquired image datasets in certain complex real-world problems such as anomaly detection, emotion recognition, medical image analysis, fraud detection, metallic surface defect detection, disaster prediction, etc., are inevitable. The performance of computer vision algorithms can significantly deteriorate when the training dataset is imbalanced. In recent years, Generative Adversarial Neural Networks (GANs) have gained immense attention by researchers across a variety of application domains due to their capability to model complex real-world image data. It is particularly important that GANs can not only be used to generate synthetic images, but also its fascinating adversarial learning idea showed good potential in restoring balance in imbalanced datasets. In this paper, we examine the most recent developments of GANs based techniques for addressing imbalance problems in image data. The real-world challenges and implementations of synthetic image generation based on GANs are extensively covered in this survey. Our survey first introduces various imbalance problems in computer vision tasks and its existing solutions, and then examines key concepts such as deep generative image models and GANs. After that, we propose a taxonomy to summarize GANs based techniques for addressing imbalance problems in computer vision tasks into three major categories: 1. Image level imbalances in classification, 2. object level imbalances in object detection and 3. pixel level imbalances in segmentation tasks. We elaborate the imbalance problems of each group, and provide GANs based solutions in each group. Readers will understand how GANs based techniques can handle the problem of imbalances and boost performance of the computer vision algorithms

    Exploring the Relationship between Samples and Masks for Robust Defect Localization

    Full text link
    Defect detection aims to detect and localize regions out of the normal distribution.Previous approaches model normality and compare it with the input to identify defective regions, potentially limiting their generalizability.This paper proposes a one-stage framework that detects defective patterns directly without the modeling process.This ability is adopted through the joint efforts of three parties: a generative adversarial network (GAN), a newly proposed scaled pattern loss, and a dynamic masked cycle-consistent auxiliary network. Explicit information that could indicate the position of defects is intentionally excluded to avoid learning any direct mapping.Experimental results on the texture class of the challenging MVTec AD dataset show that the proposed method is 2.9% higher than the SOTA methods in F1-Score, while substantially outperforming SOTA methods in generalizability

    Automated Semiconductor Defect Inspection in Scanning Electron Microscope Images: a Systematic Review

    Full text link
    A growing need exists for efficient and accurate methods for detecting defects in semiconductor materials and devices. These defects can have a detrimental impact on the efficiency of the manufacturing process, because they cause critical failures and wafer-yield limitations. As nodes and patterns get smaller, even high-resolution imaging techniques such as Scanning Electron Microscopy (SEM) produce noisy images due to operating close to sensitivity levels and due to varying physical properties of different underlayers or resist materials. This inherent noise is one of the main challenges for defect inspection. One promising approach is the use of machine learning algorithms, which can be trained to accurately classify and locate defects in semiconductor samples. Recently, convolutional neural networks have proved to be particularly useful in this regard. This systematic review provides a comprehensive overview of the state of automated semiconductor defect inspection on SEM images, including the most recent innovations and developments. 38 publications were selected on this topic, indexed in IEEE Xplore and SPIE databases. For each of these, the application, methodology, dataset, results, limitations and future work were summarized. A comprehensive overview and analysis of their methods is provided. Finally, promising avenues for future work in the field of SEM-based defect inspection are suggested.Comment: 16 pages, 12 figures, 3 table

    Incremental Self-Supervised Learning Based on Transformer for Anomaly Detection and Localization

    Full text link
    In the machine learning domain, research on anomaly detection and localization within image data has garnered significant attention, particularly in practical applications such as industrial defect detection. While existing approaches predominantly rely on Convolutional Neural Networks (CNN) as their backbone network, we propose an innovative method based on the Transformer backbone network. Our approach employs a two-stage incremental learning strategy. In the first stage, we train a Masked Autoencoder (MAE) model exclusively on normal images. Subsequently, in the second stage, we implement pixel-level data augmentation techniques to generate corrupted normal images and their corresponding pixel labels. This process enables the model to learn how to repair corrupted regions and classify the state of each pixel. Ultimately, the model produces a pixel reconstruction error matrix and a pixel anomaly probability matrix, which are combined to create an anomaly scoring matrix that effectively identifies abnormal regions. When compared to several state-of-the-art CNN-based techniques, our method demonstrates superior performance on the MVTec AD dataset, achieving an impressive 97.6% AUC
    • …
    corecore