84 research outputs found

    Image Quality Assessment for Population Cardiac MRI: From Detection to Synthesis

    Get PDF
    Cardiac magnetic resonance (CMR) images play a growing role in diagnostic imaging of cardiovascular diseases. Left Ventricular (LV) cardiac anatomy and function are widely used for diagnosis and monitoring disease progression in cardiology and to assess the patient's response to cardiac surgery and interventional procedures. For population imaging studies, CMR is arguably the most comprehensive imaging modality for non-invasive and non-ionising imaging of the heart and great vessels and, hence, most suited for population imaging cohorts. Due to insufficient radiographer's experience in planning a scan, natural cardiac muscle contraction, breathing motion, and imperfect triggering, CMR can display incomplete LV coverage, which hampers quantitative LV characterization and diagnostic accuracy. To tackle this limitation and enhance the accuracy and robustness of the automated cardiac volume and functional assessment, this thesis focuses on the development and application of state-of-the-art deep learning (DL) techniques in cardiac imaging. Specifically, we propose new image feature representation types that are learnt with DL models and aimed at highlighting the CMR image quality cross-dataset. These representations are also intended to estimate the CMR image quality for better interpretation and analysis. Moreover, we investigate how quantitative analysis can benefit when these learnt image representations are used in image synthesis. Specifically, a 3D fisher discriminative representation is introduced to identify CMR image quality in the UK Biobank cardiac data. Additionally, a novel adversarial learning (AL) framework is introduced for the cross-dataset CMR image quality assessment and we show that the common representations learnt by AL can be useful and informative for cross-dataset CMR image analysis. Moreover, we utilize the dataset invariance (DI) representations for CMR volumes interpolation by introducing a novel generative adversarial nets (GANs) based image synthesis framework, which enhance the CMR image quality cross-dataset

    Simulation and Synthesis for Cardiac Magnetic Resonance Image Analysis

    Get PDF

    From Fully-Supervised Single-Task to Semi-Supervised Multi-Task Deep Learning Architectures for Segmentation in Medical Imaging Applications

    Get PDF
    Medical imaging is routinely performed in clinics worldwide for the diagnosis and treatment of numerous medical conditions in children and adults. With the advent of these medical imaging modalities, radiologists can visualize both the structure of the body as well as the tissues within the body. However, analyzing these high-dimensional (2D/3D/4D) images demands a significant amount of time and effort from radiologists. Hence, there is an ever-growing need for medical image computing tools to extract relevant information from the image data to help radiologists perform efficiently. Image analysis based on machine learning has pivotal potential to improve the entire medical imaging pipeline, providing support for clinical decision-making and computer-aided diagnosis. To be effective in addressing challenging image analysis tasks such as classification, detection, registration, and segmentation, specifically for medical imaging applications, deep learning approaches have shown significant improvement in performance. While deep learning has shown its potential in a variety of medical image analysis problems including segmentation, motion estimation, etc., generalizability is still an unsolved problem and many of these successes are achieved at the cost of a large pool of datasets. For most practical applications, getting access to a copious dataset can be very difficult, often impossible. Annotation is tedious and time-consuming. This cost is further amplified when annotation must be done by a clinical expert in medical imaging applications. Additionally, the applications of deep learning in the real-world clinical setting are still limited due to the lack of reliability caused by the limited prediction capabilities of some deep learning models. Moreover, while using a CNN in an automated image analysis pipeline, it’s critical to understand which segmentation results are problematic and require further manual examination. To this extent, the estimation of uncertainty calibration in a semi-supervised setting for medical image segmentation is still rarely reported. This thesis focuses on developing and evaluating optimized machine learning models for a variety of medical imaging applications, ranging from fully-supervised, single-task learning to semi-supervised, multi-task learning that makes efficient use of annotated training data. The contributions of this dissertation are as follows: (1) developing a fully-supervised, single-task transfer learning for the surgical instrument segmentation from laparoscopic images; and (2) utilizing supervised, single-task, transfer learning for segmenting and digitally removing the surgical instruments from endoscopic/laparoscopic videos to allow the visualization of the anatomy being obscured by the tool. The tool removal algorithms use a tool segmentation mask and either instrument-free reference frames or previous instrument-containing frames to fill in (inpaint) the instrument segmentation mask; (3) developing fully-supervised, single-task learning via efficient weight pruning and learned group convolution for accurate left ventricle (LV), right ventricle (RV) blood pool and myocardium localization and segmentation from 4D cine cardiac MR images; (4) demonstrating the use of our fully-supervised memory-efficient model to generate dynamic patient-specific right ventricle (RV) models from cine cardiac MRI dataset via an unsupervised learning-based deformable registration field; and (5) integrating a Monte Carlo dropout into our fully-supervised memory-efficient model with inherent uncertainty estimation, with the overall goal to estimate the uncertainty associated with the obtained segmentation and error, as a means to flag regions that feature less than optimal segmentation results; (6) developing semi-supervised, single-task learning via self-training (through meta pseudo-labeling) in concert with a Teacher network that instructs the Student network by generating pseudo-labels given unlabeled input data; (7) proposing largely-unsupervised, multi-task learning to demonstrate the power of a simple combination of a disentanglement block, variational autoencoder (VAE), generative adversarial network (GAN), and a conditioning layer-based reconstructor for performing two of the foremost critical tasks in medical imaging — segmentation of cardiac structures and reconstruction of the cine cardiac MR images; (8) demonstrating the use of 3D semi-supervised, multi-task learning for jointly learning multiple tasks in a single backbone module – uncertainty estimation, geometric shape generation, and cardiac anatomical structure segmentation of the left atrial cavity from 3D Gadolinium-enhanced magnetic resonance (GE-MR) images. This dissertation summarizes the impact of the contributions of our work in terms of demonstrating the adaptation and use of deep learning architectures featuring different levels of supervision to build a variety of image segmentation tools and techniques that can be used across a wide spectrum of medical image computing applications centered on facilitating and promoting the wide-spread computer-integrated diagnosis and therapy data science

    Multi-modality cardiac image computing: a survey

    Get PDF
    Multi-modality cardiac imaging plays a key role in the management of patients with cardiovascular diseases. It allows a combination of complementary anatomical, morphological and functional information, increases diagnosis accuracy, and improves the efficacy of cardiovascular interventions and clinical outcomes. Fully-automated processing and quantitative analysis of multi-modality cardiac images could have a direct impact on clinical research and evidence-based patient management. However, these require overcoming significant challenges including inter-modality misalignment and finding optimal methods to integrate information from different modalities. This paper aims to provide a comprehensive review of multi-modality imaging in cardiology, the computing methods, the validation strategies, the related clinical workflows and future perspectives. For the computing methodologies, we have a favored focus on the three tasks, i.e., registration, fusion and segmentation, which generally involve multi-modality imaging data, either combining information from different modalities or transferring information across modalities. The review highlights that multi-modality cardiac imaging data has the potential of wide applicability in the clinic, such as trans-aortic valve implantation guidance, myocardial viability assessment, and catheter ablation therapy and its patient selection. Nevertheless, many challenges remain unsolved, such as missing modality, modality selection, combination of imaging and non-imaging data, and uniform analysis and representation of different modalities. There is also work to do in defining how the well-developed techniques fit in clinical workflows and how much additional and relevant information they introduce. These problems are likely to continue to be an active field of research and the questions to be answered in the future

    Deep learning for unsupervised domain adaptation in medical imaging: Recent advancements and future perspectives

    Full text link
    Deep learning has demonstrated remarkable performance across various tasks in medical imaging. However, these approaches primarily focus on supervised learning, assuming that the training and testing data are drawn from the same distribution. Unfortunately, this assumption may not always hold true in practice. To address these issues, unsupervised domain adaptation (UDA) techniques have been developed to transfer knowledge from a labeled domain to a related but unlabeled domain. In recent years, significant advancements have been made in UDA, resulting in a wide range of methodologies, including feature alignment, image translation, self-supervision, and disentangled representation methods, among others. In this paper, we provide a comprehensive literature review of recent deep UDA approaches in medical imaging from a technical perspective. Specifically, we categorize current UDA research in medical imaging into six groups and further divide them into finer subcategories based on the different tasks they perform. We also discuss the respective datasets used in the studies to assess the divergence between the different domains. Finally, we discuss emerging areas and provide insights and discussions on future research directions to conclude this survey.Comment: Under Revie

    Automated Diagnosis of Cardiovascular Diseases from Cardiac Magnetic Resonance Imaging Using Deep Learning Models: A Review

    Full text link
    In recent years, cardiovascular diseases (CVDs) have become one of the leading causes of mortality globally. CVDs appear with minor symptoms and progressively get worse. The majority of people experience symptoms such as exhaustion, shortness of breath, ankle swelling, fluid retention, and other symptoms when starting CVD. Coronary artery disease (CAD), arrhythmia, cardiomyopathy, congenital heart defect (CHD), mitral regurgitation, and angina are the most common CVDs. Clinical methods such as blood tests, electrocardiography (ECG) signals, and medical imaging are the most effective methods used for the detection of CVDs. Among the diagnostic methods, cardiac magnetic resonance imaging (CMR) is increasingly used to diagnose, monitor the disease, plan treatment and predict CVDs. Coupled with all the advantages of CMR data, CVDs diagnosis is challenging for physicians due to many slices of data, low contrast, etc. To address these issues, deep learning (DL) techniques have been employed to the diagnosis of CVDs using CMR data, and much research is currently being conducted in this field. This review provides an overview of the studies performed in CVDs detection using CMR images and DL techniques. The introduction section examined CVDs types, diagnostic methods, and the most important medical imaging techniques. In the following, investigations to detect CVDs using CMR images and the most significant DL methods are presented. Another section discussed the challenges in diagnosing CVDs from CMR data. Next, the discussion section discusses the results of this review, and future work in CVDs diagnosis from CMR images and DL techniques are outlined. The most important findings of this study are presented in the conclusion section

    Multimodal and disentangled representation learning for medical image analysis

    Get PDF
    Automated medical image analysis is a growing research field with various applications in modern healthcare. Furthermore, a multitude of imaging techniques (or modalities) have been developed, such as Magnetic Resonance (MR) and Computed Tomography (CT), to attenuate different organ characteristics. Research on image analysis is predominately driven by deep learning methods due to their demonstrated performance. In this thesis, we argue that their success and generalisation relies on learning good latent representations. We propose methods for learning spatial representations that are suitable for medical image data, and can combine information coming from different modalities. Specifically, we aim to improve cardiac MR segmentation, a challenging task due to varied images and limited expert annotations, by considering complementary information present in (potentially unaligned) images of other modalities. In order to evaluate the benefit of multimodal learning, we initially consider a synthesis task on spatially aligned multimodal brain MR images. We propose a deep network of multiple encoders and decoders, which we demonstrate outperforms existing approaches. The encoders (one per input modality) map the multimodal images into modality invariant spatial feature maps. Common and unique information is combined into a fused representation, that is robust to missing modalities, and can be decoded into synthetic images of the target modalities. Different experimental settings demonstrate the benefit of multimodal over unimodal synthesis, although input and output image pairs are required for training. The need for paired images can be overcome with the cycle consistency principle, which we use in conjunction with adversarial training to transform images from one modality (e.g. MR) to images in another (e.g. CT). This is useful especially in cardiac datasets, where different spatial and temporal resolutions make image pairing difficult, if not impossible. Segmentation can also be considered as a form of image synthesis, if one modality consists of semantic maps. We consider the task of extracting segmentation masks for cardiac MR images, and aim to overcome the challenge of limited annotations, by taking into account unannanotated images which are commonly ignored. We achieve this by defining suitable latent spaces, which represent the underlying anatomies (spatial latent variable), as well as the imaging characteristics (non-spatial latent variable). Anatomical information is required for tasks such as segmentation and regression, whereas imaging information can capture variability in intensity characteristics for example due to different scanners. We propose two models that disentangle cardiac images at different levels: the first extracts the myocardium from the surrounding information, whereas the second fully separates the anatomical from the imaging characteristics. Experimental analysis confirms the utility of disentangled representations in semi-supervised segmentation, and in regression of cardiac indices, while maintaining robustness to intensity variations such as the ones induced by different modalities. Finally, our prior research is aggregated into one framework that encodes multimodal images into disentangled anatomical and imaging factors. Several challenges of multimodal cardiac imaging, such as input misalignments and the lack of expert annotations, are successfully handled in the shared anatomy space. Furthermore, we demonstrate that this approach can be used to combine complementary anatomical information for the purpose of multimodal segmentation. This can be achieved even when no annotations are provided for one of the modalities. This thesis creates new avenues for further research in the area of multimodal and disentangled learning with spatial representations, which we believe are key to more generalised deep learning solutions in healthcare
    • 

    corecore