51 research outputs found

    Unsupervised Spectral-Spatial Feature Learning via Deep Residual Conv-Deconv Network for Hyperspectral Image Classification

    Get PDF
    Supervised approaches classify input data using a set of representative samples for each class, known as Training samples. The collection of such samples is expensive and time demanding. Hence, unsupervised feature learning, which has a quick access to arbitrary amounts of unlabeled data, is conceptually of high interest. In this paper, we propose a novel network architecture, fully Conv–Deconv network, for unsupervised spectral–spatial feature learning of hyperspectral images, which is able to be trained in an end-to-end manner. Specifically, our network is based on the so-called encoder– decoder paradigm, i.e., the input 3-D hyperspectral patch is first transformed into a typically lower dimensional space via a convolutional subnetwork (encoder), and then expanded to reproduce the initial data by a deconvolutional subnetwork (decoder). However, during the experiment, we found that such a network is not easy to be optimized. To address this problem, we refine the proposed network architecture by incorporating: 1) residual learning and 2) a new unpooling operation that can use memorized max-pooling indexes. Moreover, to understand the “black box,” we make an in-depth study of the learned Feature maps in the experimental analysis. A very interesting discovery is that some specific “neurons” in the first residual block of the proposed network own good description power for semantic visual patterns in the object level, which provide an opportunity to achieve “free” object detection. This paper, for the first time in the remote sensing community, proposes an end-to-end fully Conv–Deconv network for unsupervised spectral–spatial feature learning. Moreover, this paper also introduces an in-depth investigation of learned features. Experimental results on two widely used hyperspectral data, Indian Pines and Pavia University, demonstrate competitive performance obtained by the proposed methodology compared with other studied approaches

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    Deep Vision in Optical Imagery: From Perception to Reasoning

    Get PDF
    Deep learning has achieved extraordinary success in a wide range of tasks in computer vision field over the past years. Remote sensing data present different properties as compared to natural images/videos, due to their unique imaging technique, shooting angle, etc. For instance, hyperspectral images usually have hundreds of spectral bands, offering additional information, and the size of objects (e.g., vehicles) in remote sensing images is quite limited, which brings challenges for detection or segmentation tasks. This thesis focuses on two kinds of remote sensing data, namely hyper/multi-spectral and high-resolution images, and explores several methods to try to find answers to the following questions: - In comparison with natural images or videos in computer vision, the unique asset of hyper/multi-spectral data is their rich spectral information. But what this “additional” information brings for learning a network? And how do we take full advantage of these spectral bands? - Remote sensing images at high resolution have pretty different characteristics, bringing challenges for several tasks, for example, small object segmentation. Can we devise tailored networks for such tasks? - Deep networks have produced stunning results in a variety of perception tasks, e.g., image classification, object detection, and semantic segmentation. While the capacity to reason about relations over space is vital for intelligent species. Can a network/module with the capacity of reasoning benefit to parsing remote sensing data? To this end, a couple of networks are devised to figure out what a network learns from hyperspectral images and how to efficiently use spectral bands. In addition, a multi-task learning network is investigated for the instance segmentation of vehicles from aerial images and videos. Finally, relational reasoning modules are designed to improve semantic segmentation of aerial images

    S3^3R: Self-supervised Spectral Regression for Hyperspectral Histopathology Image Classification

    Full text link
    Benefited from the rich and detailed spectral information in hyperspectral images (HSI), HSI offers great potential for a wide variety of medical applications such as computational pathology. But, the lack of adequate annotated data and the high spatiospectral dimensions of HSIs usually make classification networks prone to overfit. Thus, learning a general representation which can be transferred to the downstream tasks is imperative. To our knowledge, no appropriate self-supervised pre-training method has been designed for histopathology HSIs. In this paper, we introduce an efficient and effective Self-supervised Spectral Regression (S3^3R) method, which exploits the low rank characteristic in the spectral domain of HSI. More concretely, we propose to learn a set of linear coefficients that can be used to represent one band by the remaining bands via masking out these bands. Then, the band is restored by using the learned coefficients to reweight the remaining bands. Two pre-text tasks are designed: (1)S3^3R-CR, which regresses the linear coefficients, so that the pre-trained model understands the inherent structures of HSIs and the pathological characteristics of different morphologies; (2)S3^3R-BR, which regresses the missing band, making the model to learn the holistic semantics of HSIs. Compared to prior arts i.e., contrastive learning methods, which focuses on natural images, S3^3R converges at least 3 times faster, and achieves significant improvements up to 14% in accuracy when transferring to HSI classification tasks

    Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources

    Get PDF
    Central to the looming paradigm shift toward data-intensive science, machine-learning techniques are becoming increasingly important. In particular, deep learning has proven to be both a major breakthrough and an extremely powerful tool in many fields. Shall we embrace deep learning as the key to everything? Or should we resist a black-box solution? These are controversial issues within the remote-sensing community. In this article, we analyze the challenges of using deep learning for remote-sensing data analysis, review recent advances, and provide resources we hope will make deep learning in remote sensing seem ridiculously simple. More importantly, we encourage remote-sensing scientists to bring their expertise into deep learning and use it as an implicit general model to tackle unprecedented, large-scale, influential challenges, such as climate change and urbanization

    Deep Pyramidal Residual Networks for Spectral-Spatial Hyperspectral Image Classification

    Get PDF
    Convolutional neural networks (CNNs) exhibit good performance in image processing tasks, pointing themselves as the current state-of-the-art of deep learning methods. However, the intrinsic complexity of remotely sensed hyperspectral images still limits the performance of many CNN models. The high dimensionality of the HSI data, together with the underlying redundancy and noise, often makes the standard CNN approaches unable to generalize discriminative spectral-spatial features. Moreover, deeper CNN architectures also find challenges when additional layers are added, which hampers the network convergence and produces low classification accuracies. In order to mitigate these issues, this paper presents a new deep CNN architecture specially designed for the HSI data. Our new model pursues to improve the spectral-spatial features uncovered by the convolutional filters of the network. Specifically, the proposed residual-based approach gradually increases the feature map dimension at all convolutional layers, grouped in pyramidal bottleneck residual blocks, in order to involve more locations as the network depth increases while balancing the workload among all units, preserving the time complexity per layer. It can be seen as a pyramid, where the deeper the blocks, the more feature maps can be extracted. Therefore, the diversity of high-level spectral-spatial attributes can be gradually increased across layers to enhance the performance of the proposed network with the HSI data. Our experiments, conducted using four well-known HSI data sets and 10 different classification techniques, reveal that our newly developed HSI pyramidal residual model is able to provide competitive advantages (in terms of both classification accuracy and computational time) over the state-of-the-art HSI classification methods
    • …
    corecore