207 research outputs found

    Toward a self-organizing pre-symbolic neural model representing sensorimotor primitives

    Get PDF
    Copyright ©2014 Zhong, Cangelosi and Wermter.This is an open-access article distributed under the terms of the Creative Commons Attribution License (CCBY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these termsThe acquisition of symbolic and linguistic representations of sensorimotor behavior is a cognitive process performed by an agent when it is executing and/or observing own and others' actions. According to Piaget's theory of cognitive development, these representations develop during the sensorimotor stage and the pre-operational stage. We propose a model that relates the conceptualization of the higher-level information from visual stimuli to the development of ventral/dorsal visual streams. This model employs neural network architecture incorporating a predictive sensory module based on an RNNPB (Recurrent Neural Network with Parametric Biases) and a horizontal product model. We exemplify this model through a robot passively observing an object to learn its features and movements. During the learning process of observing sensorimotor primitives, i.e., observing a set of trajectories of arm movements and its oriented object features, the pre-symbolic representation is self-organized in the parametric units. These representational units act as bifurcation parameters, guiding the robot to recognize and predict various learned sensorimotor primitives. The pre-symbolic representation also accounts for the learning of sensorimotor primitives in a latent learning context.Peer reviewedFinal Published versio

    Discovering Affordances Through Perception and Manipulation

    Get PDF
    International audienceConsidering perception as an observation process only is the very reason for which robotic perception methods are to date unable to provide a general capacity of scene understanding. Related work in neuroscience has shown that there is a strong relationship between perception and action. We believe that considering perception in relation to action requires to interpret the scene in terms of the agent's own potential capabilities. In this paper, we propose a Bayesian approach for learning sensorimotor representations through the interaction between action and observation capabilities. We represent the notion of affordance as a probabilistic relation between three elements: objects, actions and effects. Experiments for affordances discovery were performed on a real robotic platform in an unsupervised way assuming a limited set of innate capabilities. Results show dependency relations that connect the three elements in a common frame: affordances. The increasing number of interactions and observations results in a Bayesian network that captures the relationships between them. The learned representation can be used for prediction tasks

    Affordances in Psychology, Neuroscience, and Robotics: A Survey

    Get PDF
    The concept of affordances appeared in psychology during the late 60s as an alternative perspective on the visual perception of the environment. It was revolutionary in the intuition that the way living beings perceive the world is deeply influenced by the actions they are able to perform. Then, across the last 40 years, it has influenced many applied fields, e.g., design, human-computer interaction, computer vision, and robotics. In this paper, we offer a multidisciplinary perspective on the notion of affordances. We first discuss the main definitions and formalizations of the affordance theory, then we report the most significant evidence in psychology and neuroscience that support it, and finally we review the most relevant applications of this concept in robotics

    Unsupervised Temporospatial Neural Architecture for Sensorimotor Map Learning

    Get PDF
    Peer reviewedPostprin

    Effects of Anticipation in Individually Motivated Behaviour on Control and Survival in a Multi-Agent Scenario with Resource Constraints

    Get PDF
    This is an open access article distributed under the Creative Commons Attribution License CC BY 3.0 which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Self-organization and survival are inextricably bound to an agent’s ability to control and anticipate its environment. Here we assess both skills when multiple agents compete for a scarce resource. Drawing on insights from psychology, microsociology and control theory, we examine how different assumptions about the behaviour of an agent’s peers in the anticipation process affect subjective control and survival strategies. To quantify control and drive behaviour, we use the recently developed information-theoretic quantity of empowerment with the principle of empowerment maximization. In two experiments involving extensive simulations, we show that agents develop risk-seeking, risk-averse and mixed strategies, which correspond to greedy, parsimonious and mixed behaviour. Although the principle of empowerment maximization is highly generic, the emerging strategies are consistent with what one would expect from rational individuals with dedicated utility models. Our results support empowerment maximization as a universal drive for guided self-organization in collective agent systemsPeer reviewedFinal Published versio
    • …
    corecore