23 research outputs found

    The Importance of Category Labels in Grammar Induction with Child-directed Utterances

    Full text link
    Recent progress in grammar induction has shown that grammar induction is possible without explicit assumptions of language-specific knowledge. However, evaluation of induced grammars usually has ignored phrasal labels, an essential part of a grammar. Experiments in this work using a labeled evaluation metric, RH, show that linguistically motivated predictions about grammar sparsity and use of categories can only be revealed through labeled evaluation. Furthermore, depth-bounding as an implementation of human memory constraints in grammar inducers is still effective with labeled evaluation on multilingual transcribed child-directed utterances.Comment: The 16th International Conference on Parsing Technologies (IWPT 2020

    Co-training an Unsupervised Constituency Parser with Weak Supervision

    Get PDF
    We introduce a method for unsupervised parsing that relies on bootstrapping classifiers to identify if a node dominates a specific span in a sentence. There are two types of classifiers, an inside classifier that acts on a span, and an outside classifier that acts on everything outside of a given span. Through self-training and co-training with the two classifiers, we show that the interplay between them helps improve the accuracy of both, and as a result, effectively parse. A seed bootstrapping technique prepares the data to train these classifiers. Our analyses further validate that such an approach in conjunction with weak supervision using prior branching knowledge of a known language (left/right-branching) and minimal heuristics injects strong inductive bias into the parser, achieving 63.1 F1_1 on the English (PTB) test set. In addition, we show the effectiveness of our architecture by evaluating on treebanks for Chinese (CTB) and Japanese (KTB) and achieve new state-of-the-art results. Our code and pre-trained models are available at https://github.com/Nickil21/weakly-supervised-parsing.Comment: Accepted to Findings of ACL 202

    Deep Clustering of Text Representations for Supervision-free Probing of Syntax

    Full text link
    We explore deep clustering of text representations for unsupervised model interpretation and induction of syntax. As these representations are high-dimensional, out-of-the-box methods like KMeans do not work well. Thus, our approach jointly transforms the representations into a lower-dimensional cluster-friendly space and clusters them. We consider two notions of syntax: Part of speech Induction (POSI) and constituency labelling (CoLab) in this work. Interestingly, we find that Multilingual BERT (mBERT) contains surprising amount of syntactic knowledge of English; possibly even as much as English BERT (EBERT). Our model can be used as a supervision-free probe which is arguably a less-biased way of probing. We find that unsupervised probes show benefits from higher layers as compared to supervised probes. We further note that our unsupervised probe utilizes EBERT and mBERT representations differently, especially for POSI. We validate the efficacy of our probe by demonstrating its capabilities as an unsupervised syntax induction technique. Our probe works well for both syntactic formalisms by simply adapting the input representations. We report competitive performance of our probe on 45-tag English POSI, state-of-the-art performance on 12-tag POSI across 10 languages, and competitive results on CoLab. We also perform zero-shot syntax induction on resource impoverished languages and report strong results

    GFlowNet-EM for learning compositional latent variable models

    Full text link
    Latent variable models (LVMs) with discrete compositional latents are an important but challenging setting due to a combinatorially large number of possible configurations of the latents. A key tradeoff in modeling the posteriors over latents is between expressivity and tractable optimization. For algorithms based on expectation-maximization (EM), the E-step is often intractable without restrictive approximations to the posterior. We propose the use of GFlowNets, algorithms for sampling from an unnormalized density by learning a stochastic policy for sequential construction of samples, for this intractable E-step. By training GFlowNets to sample from the posterior over latents, we take advantage of their strengths as amortized variational inference algorithms for complex distributions over discrete structures. Our approach, GFlowNet-EM, enables the training of expressive LVMs with discrete compositional latents, as shown by experiments on non-context-free grammar induction and on images using discrete variational autoencoders (VAEs) without conditional independence enforced in the encoder.Comment: ICML 2023; code: https://github.com/GFNOrg/GFlowNet-E
    corecore