20,225 research outputs found

    Color Constancy Convolutional Autoencoder

    Full text link
    In this paper, we study the importance of pre-training for the generalization capability in the color constancy problem. We propose two novel approaches based on convolutional autoencoders: an unsupervised pre-training algorithm using a fine-tuned encoder and a semi-supervised pre-training algorithm using a novel composite-loss function. This enables us to solve the data scarcity problem and achieve competitive, to the state-of-the-art, results while requiring much fewer parameters on ColorChecker RECommended dataset. We further study the over-fitting phenomenon on the recently introduced version of INTEL-TUT Dataset for Camera Invariant Color Constancy Research, which has both field and non-field scenes acquired by three different camera models.Comment: 6 pages, 1 figure, 3 table

    Convolutional Sparse Kernel Network for Unsupervised Medical Image Analysis

    Full text link
    The availability of large-scale annotated image datasets and recent advances in supervised deep learning methods enable the end-to-end derivation of representative image features that can impact a variety of image analysis problems. Such supervised approaches, however, are difficult to implement in the medical domain where large volumes of labelled data are difficult to obtain due to the complexity of manual annotation and inter- and intra-observer variability in label assignment. We propose a new convolutional sparse kernel network (CSKN), which is a hierarchical unsupervised feature learning framework that addresses the challenge of learning representative visual features in medical image analysis domains where there is a lack of annotated training data. Our framework has three contributions: (i) We extend kernel learning to identify and represent invariant features across image sub-patches in an unsupervised manner. (ii) We initialise our kernel learning with a layer-wise pre-training scheme that leverages the sparsity inherent in medical images to extract initial discriminative features. (iii) We adapt a multi-scale spatial pyramid pooling (SPP) framework to capture subtle geometric differences between learned visual features. We evaluated our framework in medical image retrieval and classification on three public datasets. Our results show that our CSKN had better accuracy when compared to other conventional unsupervised methods and comparable accuracy to methods that used state-of-the-art supervised convolutional neural networks (CNNs). Our findings indicate that our unsupervised CSKN provides an opportunity to leverage unannotated big data in medical imaging repositories.Comment: Accepted by Medical Image Analysis (with a new title 'Convolutional Sparse Kernel Network for Unsupervised Medical Image Analysis'). The manuscript is available from following link (https://doi.org/10.1016/j.media.2019.06.005

    Improving Unsupervised Defect Segmentation by Applying Structural Similarity to Autoencoders

    Full text link
    Convolutional autoencoders have emerged as popular methods for unsupervised defect segmentation on image data. Most commonly, this task is performed by thresholding a pixel-wise reconstruction error based on an â„“p\ell^p distance. This procedure, however, leads to large residuals whenever the reconstruction encompasses slight localization inaccuracies around edges. It also fails to reveal defective regions that have been visually altered when intensity values stay roughly consistent. We show that these problems prevent these approaches from being applied to complex real-world scenarios and that it cannot be easily avoided by employing more elaborate architectures such as variational or feature matching autoencoders. We propose to use a perceptual loss function based on structural similarity which examines inter-dependencies between local image regions, taking into account luminance, contrast and structural information, instead of simply comparing single pixel values. It achieves significant performance gains on a challenging real-world dataset of nanofibrous materials and a novel dataset of two woven fabrics over the state of the art approaches for unsupervised defect segmentation that use pixel-wise reconstruction error metrics

    Exemplar Based Deep Discriminative and Shareable Feature Learning for Scene Image Classification

    Full text link
    In order to encode the class correlation and class specific information in image representation, we propose a new local feature learning approach named Deep Discriminative and Shareable Feature Learning (DDSFL). DDSFL aims to hierarchically learn feature transformation filter banks to transform raw pixel image patches to features. The learned filter banks are expected to: (1) encode common visual patterns of a flexible number of categories; (2) encode discriminative information; and (3) hierarchically extract patterns at different visual levels. Particularly, in each single layer of DDSFL, shareable filters are jointly learned for classes which share the similar patterns. Discriminative power of the filters is achieved by enforcing the features from the same category to be close, while features from different categories to be far away from each other. Furthermore, we also propose two exemplar selection methods to iteratively select training data for more efficient and effective learning. Based on the experimental results, DDSFL can achieve very promising performance, and it also shows great complementary effect to the state-of-the-art Caffe features.Comment: Pattern Recognition, Elsevier, 201

    Visual-Quality-Driven Learning for Underwater Vision Enhancement

    Full text link
    The image processing community has witnessed remarkable advances in enhancing and restoring images. Nevertheless, restoring the visual quality of underwater images remains a great challenge. End-to-end frameworks might fail to enhance the visual quality of underwater images since in several scenarios it is not feasible to provide the ground truth of the scene radiance. In this work, we propose a CNN-based approach that does not require ground truth data since it uses a set of image quality metrics to guide the restoration learning process. The experiments showed that our method improved the visual quality of underwater images preserving their edges and also performed well considering the UCIQE metric.Comment: Accepted for publication and presented in 2018 IEEE International Conference on Image Processing (ICIP
    • …
    corecore