725 research outputs found

    Unsupervised Learning for Optical Flow Estimation Using Pyramid Convolution LSTM

    Full text link
    Most of current Convolution Neural Network (CNN) based methods for optical flow estimation focus on learning optical flow on synthetic datasets with groundtruth, which is not practical. In this paper, we propose an unsupervised optical flow estimation framework named PCLNet. It uses pyramid Convolution LSTM (ConvLSTM) with the constraint of adjacent frame reconstruction, which allows flexibly estimating multi-frame optical flows from any video clip. Besides, by decoupling motion feature learning and optical flow representation, our method avoids complex short-cut connections used in existing frameworks while improving accuracy of optical flow estimation. Moreover, different from those methods using specialized CNN architectures for capturing motion, our framework directly learns optical flow from the features of generic CNNs and thus can be easily embedded in any CNN based frameworks for other tasks. Extensive experiments have verified that our method not only estimates optical flow effectively and accurately, but also obtains comparable performance on action recognition.Comment: IEEE International Conference on Multimedia and Expo(ICME). 201

    Self-supervised Visual Feature Learning with Deep Neural Networks: A Survey

    Full text link
    Large-scale labeled data are generally required to train deep neural networks in order to obtain better performance in visual feature learning from images or videos for computer vision applications. To avoid extensive cost of collecting and annotating large-scale datasets, as a subset of unsupervised learning methods, self-supervised learning methods are proposed to learn general image and video features from large-scale unlabeled data without using any human-annotated labels. This paper provides an extensive review of deep learning-based self-supervised general visual feature learning methods from images or videos. First, the motivation, general pipeline, and terminologies of this field are described. Then the common deep neural network architectures that used for self-supervised learning are summarized. Next, the main components and evaluation metrics of self-supervised learning methods are reviewed followed by the commonly used image and video datasets and the existing self-supervised visual feature learning methods. Finally, quantitative performance comparisons of the reviewed methods on benchmark datasets are summarized and discussed for both image and video feature learning. At last, this paper is concluded and lists a set of promising future directions for self-supervised visual feature learning

    Future Semantic Segmentation with Convolutional LSTM

    Full text link
    We consider the problem of predicting semantic segmentation of future frames in a video. Given several observed frames in a video, our goal is to predict the semantic segmentation map of future frames that are not yet observed. A reliable solution to this problem is useful in many applications that require real-time decision making, such as autonomous driving. We propose a novel model that uses convolutional LSTM (ConvLSTM) to encode the spatiotemporal information of observed frames for future prediction. We also extend our model to use bidirectional ConvLSTM to capture temporal information in both directions. Our proposed approach outperforms other state-of-the-art methods on the benchmark dataset.Comment: Accepted to BMVC 201

    Autonomous Driving with Deep Learning: A Survey of State-of-Art Technologies

    Full text link
    Since DARPA Grand Challenges (rural) in 2004/05 and Urban Challenges in 2007, autonomous driving has been the most active field of AI applications. Almost at the same time, deep learning has made breakthrough by several pioneers, three of them (also called fathers of deep learning), Hinton, Bengio and LeCun, won ACM Turin Award in 2019. This is a survey of autonomous driving technologies with deep learning methods. We investigate the major fields of self-driving systems, such as perception, mapping and localization, prediction, planning and control, simulation, V2X and safety etc. Due to the limited space, we focus the analysis on several key areas, i.e. 2D and 3D object detection in perception, depth estimation from cameras, multiple sensor fusion on the data, feature and task level respectively, behavior modelling and prediction of vehicle driving and pedestrian trajectories

    Direct detection of pixel-level myocardial infarction areas via a deep-learning algorithm

    Full text link
    Accurate detection of the myocardial infarction (MI) area is crucial for early diagnosis planning and follow-up management. In this study, we propose an end-to-end deep-learning algorithm framework (OF-RNN ) to accurately detect the MI area at the pixel level. Our OF-RNN consists of three different function layers: the heart localization layers, which can accurately and automatically crop the region-of-interest (ROI) sequences, including the left ventricle, using the whole cardiac magnetic resonance image sequences; the motion statistical layers, which are used to build a time-series architecture to capture two types of motion features (at the pixel-level) by integrating the local motion features generated by long short-term memory-recurrent neural networks and the global motion features generated by deep optical flows from the whole ROI sequence, which can effectively characterize myocardial physiologic function; and the fully connected discriminate layers, which use stacked auto-encoders to further learn these features, and they use a softmax classifier to build the correspondences from the motion features to the tissue identities (infarction or not) for each pixel. Through the seamless connection of each layer, our OF-RNN can obtain the area, position, and shape of the MI for each patient. Our proposed framework yielded an overall classification accuracy of 94.35% at the pixel level, from 114 clinical subjects. These results indicate the potential of our proposed method in aiding standardized MI assessments

    Dual Motion GAN for Future-Flow Embedded Video Prediction

    Full text link
    Future frame prediction in videos is a promising avenue for unsupervised video representation learning. Video frames are naturally generated by the inherent pixel flows from preceding frames based on the appearance and motion dynamics in the video. However, existing methods focus on directly hallucinating pixel values, resulting in blurry predictions. In this paper, we develop a dual motion Generative Adversarial Net (GAN) architecture, which learns to explicitly enforce future-frame predictions to be consistent with the pixel-wise flows in the video through a dual-learning mechanism. The primal future-frame prediction and dual future-flow prediction form a closed loop, generating informative feedback signals to each other for better video prediction. To make both synthesized future frames and flows indistinguishable from reality, a dual adversarial training method is proposed to ensure that the future-flow prediction is able to help infer realistic future-frames, while the future-frame prediction in turn leads to realistic optical flows. Our dual motion GAN also handles natural motion uncertainty in different pixel locations with a new probabilistic motion encoder, which is based on variational autoencoders. Extensive experiments demonstrate that the proposed dual motion GAN significantly outperforms state-of-the-art approaches on synthesizing new video frames and predicting future flows. Our model generalizes well across diverse visual scenes and shows superiority in unsupervised video representation learning.Comment: ICCV 17 camera read

    Recurrent Flow-Guided Semantic Forecasting

    Full text link
    Understanding the world around us and making decisions about the future is a critical component to human intelligence. As autonomous systems continue to develop, their ability to reason about the future will be the key to their success. Semantic anticipation is a relatively under-explored area for which autonomous vehicles could take advantage of (e.g., forecasting pedestrian trajectories). Motivated by the need for real-time prediction in autonomous systems, we propose to decompose the challenging semantic forecasting task into two subtasks: current frame segmentation and future optical flow prediction. Through this decomposition, we built an efficient, effective, low overhead model with three main components: flow prediction network, feature-flow aggregation LSTM, and end-to-end learnable warp layer. Our proposed method achieves state-of-the-art accuracy on short-term and moving objects semantic forecasting while simultaneously reducing model parameters by up to 95% and increasing efficiency by greater than 40x.Comment: 10 pages, 5 figures, 8 tables, Accepted to WACV 201

    Deep Learning for Physical Processes: Incorporating Prior Scientific Knowledge

    Full text link
    We consider the use of Deep Learning methods for modeling complex phenomena like those occurring in natural physical processes. With the large amount of data gathered on these phenomena the data intensive paradigm could begin to challenge more traditional approaches elaborated over the years in fields like maths or physics. However, despite considerable successes in a variety of application domains, the machine learning field is not yet ready to handle the level of complexity required by such problems. Using an example application, namely Sea Surface Temperature Prediction, we show how general background knowledge gained from physics could be used as a guideline for designing efficient Deep Learning models. In order to motivate the approach and to assess its generality we demonstrate a formal link between the solution of a class of differential equations underlying a large family of physical phenomena and the proposed model. Experiments and comparison with series of baselines including a state of the art numerical approach is then provided

    A Survey on Deep Learning Methods for Robot Vision

    Full text link
    Deep learning has allowed a paradigm shift in pattern recognition, from using hand-crafted features together with statistical classifiers to using general-purpose learning procedures for learning data-driven representations, features, and classifiers together. The application of this new paradigm has been particularly successful in computer vision, in which the development of deep learning methods for vision applications has become a hot research topic. Given that deep learning has already attracted the attention of the robot vision community, the main purpose of this survey is to address the use of deep learning in robot vision. To achieve this, a comprehensive overview of deep learning and its usage in computer vision is given, that includes a description of the most frequently used neural models and their main application areas. Then, the standard methodology and tools used for designing deep-learning based vision systems are presented. Afterwards, a review of the principal work using deep learning in robot vision is presented, as well as current and future trends related to the use of deep learning in robotics. This survey is intended to be a guide for the developers of robot vision systems

    Handcrafted Local Features are Convolutional Neural Networks

    Full text link
    Image and video classification research has made great progress through the development of handcrafted local features and learning based features. These two architectures were proposed roughly at the same time and have flourished at overlapping stages of history. However, they are typically viewed as distinct approaches. In this paper, we emphasize their structural similarities and show how such a unified view helps us in designing features that balance efficiency and effectiveness. As an example, we study the problem of designing efficient video feature learning algorithms for action recognition. We approach this problem by first showing that local handcrafted features and Convolutional Neural Networks (CNNs) share the same convolution-pooling network structure. We then propose a two-stream Convolutional ISA (ConvISA) that adopts the convolution-pooling structure of the state-of-the-art handcrafted video feature with greater modeling capacities and a cost-effective training algorithm. Through custom designed network structures for pixels and optical flow, our method also reflects distinctive characteristics of these two data sources. Our experimental results on standard action recognition benchmarks show that by focusing on the structure of CNNs, rather than end-to-end training methods, we are able to design an efficient and powerful video feature learning algorithm
    • …
    corecore