468 research outputs found

    Unsupervised crosslingual adaptation of tokenisers for spoken language recognition

    Get PDF
    Phone tokenisers are used in spoken language recognition (SLR) to obtain elementary phonetic information. We present a study on the use of deep neural network tokenisers. Unsupervised crosslingual adaptation was performed to adapt the baseline tokeniser trained on English conversational telephone speech data to different languages. Two training and adaptation approaches, namely cross-entropy adaptation and state-level minimum Bayes risk adaptation, were tested in a bottleneck i-vector and a phonotactic SLR system. The SLR systems using the tokenisers adapted to different languages were combined using score fusion, giving 7-18% reduction in minimum detection cost function (minDCF) compared with the baseline configurations without adapted tokenisers. Analysis of results showed that the ensemble tokenisers gave diverse representation of phonemes, thus bringing complementary effects when SLR systems with different tokenisers were combined. SLR performance was also shown to be related to the quality of the adapted tokenisers

    Error Correction based on Error Signatures applied to automatic speech recognition

    Get PDF

    Language modelling for speaker diarization in telephonic interviews

    Get PDF
    The aim of this paper is to investigate the benefit of combining both language and acoustic modelling for speaker diarization. Although conventional systems only use acoustic features, in some scenarios linguistic data contain high discriminative speaker information, even more reliable than the acoustic ones. In this study we analyze how an appropriate fusion of both kind of features is able to obtain good results in these cases. The proposed system is based on an iterative algorithm where a LSTM network is used as a speaker classifier. The network is fed with character-level word embeddings and a GMM based acoustic score created with the output labels from previous iterations. The presented algorithm has been evaluated in a Call-Center database, which is composed of telephone interview audios. The combination of acoustic features and linguistic content shows a 84.29% improvement in terms of a word-level DER as compared to a HMM/VB baseline system. The results of this study confirms that linguistic content can be efficiently used for some speaker recognition tasks.This work was partially supported by the Spanish Project DeepVoice (TEC2015-69266-P) and by the project PID2019-107579RBI00/ AEI /10.13039/501100011033.Peer ReviewedPostprint (published version

    A Review of Deep Learning Techniques for Speech Processing

    Full text link
    The field of speech processing has undergone a transformative shift with the advent of deep learning. The use of multiple processing layers has enabled the creation of models capable of extracting intricate features from speech data. This development has paved the way for unparalleled advancements in speech recognition, text-to-speech synthesis, automatic speech recognition, and emotion recognition, propelling the performance of these tasks to unprecedented heights. The power of deep learning techniques has opened up new avenues for research and innovation in the field of speech processing, with far-reaching implications for a range of industries and applications. This review paper provides a comprehensive overview of the key deep learning models and their applications in speech-processing tasks. We begin by tracing the evolution of speech processing research, from early approaches, such as MFCC and HMM, to more recent advances in deep learning architectures, such as CNNs, RNNs, transformers, conformers, and diffusion models. We categorize the approaches and compare their strengths and weaknesses for solving speech-processing tasks. Furthermore, we extensively cover various speech-processing tasks, datasets, and benchmarks used in the literature and describe how different deep-learning networks have been utilized to tackle these tasks. Additionally, we discuss the challenges and future directions of deep learning in speech processing, including the need for more parameter-efficient, interpretable models and the potential of deep learning for multimodal speech processing. By examining the field's evolution, comparing and contrasting different approaches, and highlighting future directions and challenges, we hope to inspire further research in this exciting and rapidly advancing field
    • …
    corecore